Influence of Cu L-Histidinate Schiff Base Derivatives on Structural Features of Irradiated Rat’s DNA

A study of rats liver DNA damages under the influence of X-ray radiation at a dose of 6.5 Gy(LD60) was carried out. The radioprotective properties of newly synthesized Cu(II) L-Schiff Histidinate complexes were also studied. The survival of rats was determined over a 30-day period after exposure to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell biochemistry and biophysics 2024-09, Vol.82 (3), p.2557-2565
Hauptverfasser: Karapetyan, Nelli H., Haroutiunian, Samvel G., Ananyan, Gayane V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A study of rats liver DNA damages under the influence of X-ray radiation at a dose of 6.5 Gy(LD60) was carried out. The radioprotective properties of newly synthesized Cu(II) L-Schiff Histidinate complexes were also studied. The survival of rats was determined over a 30-day period after exposure to X-rays without pretreatment and also after preadministration of Cu(II) L-Histidinate-Schiff base complexes. The structural defects of rat’s liver DNA were detected at 3, 7, 14, and 30 days post-irradiation extracted. The results obtained revealed that irradiation with a 6.5Gy dose in the control group degraded the characteristics of rat liver DNA in comparison to healthy DNA. On all investigated experimental days, a decrease in the melting temperature (T m ), a widening of the melting interval (ΔT), and a decrease in hypochromicity (Δh) were observed in the DNA samples of irradiated animals compared to the norm. The rat’s pretreatment by Cu(II) L-Histidinate complexes 1 or 24 hours prior to irradiation improved DNA characteristics. Electrophoretic studies of DNA were in good agreement with the melting data. Based on the study results, it can be concluded that Cu(II) L-Histidinate complexes exhibit radioprotective properties under the studied conditions and can protect DNA from damage.
ISSN:1085-9195
1559-0283
1559-0283
DOI:10.1007/s12013-024-01368-9