In vivo AAV-SB-CRISPR screens of tumor-infiltrating primary NK cells identify genetic checkpoints of CAR-NK therapy

Natural killer (NK) cells have clinical potential against cancer; however, multiple limitations hinder the success of NK cell therapy. Here, we performed unbiased functional mapping of tumor-infiltrating NK (TINK) cells using in vivo adeno-associated virus (AAV)-SB (Sleeping Beauty)-CRISPR (clustere...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature biotechnology 2024-06
Hauptverfasser: Peng, Lei, Renauer, Paul A, Sferruzza, Giacomo, Yang, Luojia, Zou, Yongji, Fang, Zhenghao, Park, Jonathan J, Chow, Ryan D, Zhang, Yueqi, Lin, Qianqian, Bai, Meizhu, Sanchez, Angelica, Zhang, Yongzhan, Lam, Stanley Z, Ye, Lupeng, Chen, Sidi
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Natural killer (NK) cells have clinical potential against cancer; however, multiple limitations hinder the success of NK cell therapy. Here, we performed unbiased functional mapping of tumor-infiltrating NK (TINK) cells using in vivo adeno-associated virus (AAV)-SB (Sleeping Beauty)-CRISPR (clustered regularly interspaced short palindromic repeats) screens in four solid tumor mouse models. In parallel, we characterized single-cell transcriptomic landscapes of TINK cells, which identified previously unexplored subpopulations of NK cells and differentially expressed TINK genes. As a convergent hit, CALHM2-knockout (KO) NK cells showed enhanced cytotoxicity and tumor infiltration in mouse primary NK cells and human chimeric antigen receptor (CAR)-NK cells. CALHM2 mRNA reversed the CALHM2-KO phenotype. CALHM2 KO in human primary NK cells enhanced their cytotoxicity, degranulation and cytokine production. Transcriptomics profiling revealed CALHM2-KO-altered genes and pathways in both baseline and stimulated conditions. In a solid tumor model resistant to unmodified CAR-NK cells, CALHM2-KO CAR-NK cells showed potent in vivo antitumor efficacy. These data identify endogenous genetic checkpoints that naturally limit NK cell function and demonstrate the use of CALHM2 KO for engineering enhanced NK cell-based immunotherapies.
ISSN:1087-0156
1546-1696
1546-1696
DOI:10.1038/s41587-024-02282-4