Stepwise Construction of MoS2@CoAl-LDH/NF 3D Core–Shell Nanoarrays with High Hole Mobility for High-Performance Asymmetric Supercapacitors

Supercapacitors (SCs) have received widespread attention as excellent energy storage devices, and the design of multicomponent electrode materials and the construction of ingenious structures are the keys to enhancing the performance of SCs. In this paper, MoS2 nanorods were used as the carrier stru...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2024-06, Vol.16 (25), p.32434-32444
Hauptverfasser: Yan, Yue, Wu, Wenrui, Yang, Yang, Xu, Tao, Li, Xianfu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Supercapacitors (SCs) have received widespread attention as excellent energy storage devices, and the design of multicomponent electrode materials and the construction of ingenious structures are the keys to enhancing the performance of SCs. In this paper, MoS2 nanorods were used as the carrier structure to induce the anchoring of CoAl-LDH nanosheets and grow on the surface of nickel foam (NF) in situ, thus obtaining a uniformly distributed MoS2 nanorod@CoAl-LDH nanosheet core–shell nanoarray material (MoS2@CoAl-LDH/NF). On the one hand, the nanorod-structured MoS2 as the core provides high conductivity and support, accelerates electron transfer, and avoids agglomeration of CoAl-LDH nanosheets. On the other hand, CoAl-LDH nanosheet arrays have abundant interfacially active sites, which accelerate the electrolyte penetration and enhance the electrochemical activity. The synergistic effect of the two components and the unique core–shell nanostructure give MoS2@CoAl-LDH/NF a high capacity (14,888.8 mF cm–2 at 2 mA cm–2) and long-term cycling performance (104.4% retention after 5000 charge/discharge cycles). The integrated MoS2@CoAl-LDH/NF//AC device boasts a voltage range spanning from 0 to 1.5 V, achieving a peak energy density of 0.19 mW h cm–2 at 1.5 mW cm–2. Impressively, it maintains a capacitance retention rate of 84.6% after enduring 10,000 cycles, demonstrating exceptional durability and stability.
ISSN:1944-8244
1944-8252
1944-8252
DOI:10.1021/acsami.4c05421