Non-invasive prediction of massive transfusion during surgery using intraoperative hemodynamic monitoring data

[Display omitted] Failure to receive prompt blood transfusion leads to severe complications if massive bleeding occurs during surgery. For the timely preparation of blood products, predicting the possibility of massive transfusion (MT) is essential to decrease morbidity and mortality. This study aim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomedical informatics 2024-08, Vol.156, p.104680, Article 104680
Hauptverfasser: Kwon, Doyun, Mi Jung, Young, Lee, Hyung-Chul, Kyong Kim, Tae, Kim, Kwangsoo, Lee, Garam, Kim, Dokyoon, Lee, Seung-Bo, Mi Lee, Seung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 104680
container_title Journal of biomedical informatics
container_volume 156
creator Kwon, Doyun
Mi Jung, Young
Lee, Hyung-Chul
Kyong Kim, Tae
Kim, Kwangsoo
Lee, Garam
Kim, Dokyoon
Lee, Seung-Bo
Mi Lee, Seung
description [Display omitted] Failure to receive prompt blood transfusion leads to severe complications if massive bleeding occurs during surgery. For the timely preparation of blood products, predicting the possibility of massive transfusion (MT) is essential to decrease morbidity and mortality. This study aimed to develop a model for predicting MT 10 min in advance using non-invasive bio-signal waveforms that change in real-time. In this retrospective study, we developed a deep learning-based algorithm (DLA) to predict intraoperative MT within 10 min. MT was defined as the transfusion of 3 or more units of red blood cells within an hour. The datasets consisted of 18,135 patients who underwent surgery at Seoul National University Hospital (SNUH) for model development and internal validation and 621 patients who underwent surgery at the Boramae Medical Center (BMC) for external validation. We constructed the DLA by using features extracted from plethysmography (collected at 500 Hz) and hematocrit measured during surgery. Among 18,135 patients in SNUH and 621 patients in BMC, 265 patients (1.46%) and 14 patients (2.25%) received MT during surgery, respectively. The area under the receiver operating characteristic curve (AUROC) of DLA predicting intraoperative MT before 10 min was 0.962 (95% confidence interval [CI], 0.948–0.974) in internal validation and 0.922 (95% CI, 0.882–0.959) in external validation, respectively. The DLA can successfully predict intraoperative MT using non-invasive bio-signal waveforms.
doi_str_mv 10.1016/j.jbi.2024.104680
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3072000225</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1532046424000984</els_id><sourcerecordid>3072000225</sourcerecordid><originalsourceid>FETCH-LOGICAL-c235t-98723e5ec1b7caf2c7717a6c71dde5fc9d8ac9b7688ecc8df98a9673713787e63</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EoqXwAWxQlmxSbOdhR6wQ4iVVsIG15diT4qqxi51U6t_jNKVLVvZcnTvSHISuCZ4TTMq71XxVmznFNI9zXnJ8gqakyGiKc45Pj_8yn6CLEFYYE1IU5TmaZLwieU7IFNl3Z1NjtzKYLSQbD9qozjibuCZpZdinnZc2NH0YYt17Y5dJ6P0S_C6JYZyMjYjbgJfdwH9D6_TOytaopHXWdG7f0bKTl-iskesAV4d3hr6enz4fX9PFx8vb48MiVTQrurTijGZQgCI1U7KhijHCZKkY0RqKRlWaS1XVrOQclOK6qbisSpYxkjHOoMxm6Hbcu_Hup4fQidYEBeu1tOD6IDLMKMaY0iKiZESVdyF4aMTGm1b6nSBYDJrFSkTNYtAsRs2xc3NY39ct6GPjz2sE7kcA4pFbA14EZcCqqNeD6oR25p_1v0aqkIo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3072000225</pqid></control><display><type>article</type><title>Non-invasive prediction of massive transfusion during surgery using intraoperative hemodynamic monitoring data</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Kwon, Doyun ; Mi Jung, Young ; Lee, Hyung-Chul ; Kyong Kim, Tae ; Kim, Kwangsoo ; Lee, Garam ; Kim, Dokyoon ; Lee, Seung-Bo ; Mi Lee, Seung</creator><creatorcontrib>Kwon, Doyun ; Mi Jung, Young ; Lee, Hyung-Chul ; Kyong Kim, Tae ; Kim, Kwangsoo ; Lee, Garam ; Kim, Dokyoon ; Lee, Seung-Bo ; Mi Lee, Seung</creatorcontrib><description>[Display omitted] Failure to receive prompt blood transfusion leads to severe complications if massive bleeding occurs during surgery. For the timely preparation of blood products, predicting the possibility of massive transfusion (MT) is essential to decrease morbidity and mortality. This study aimed to develop a model for predicting MT 10 min in advance using non-invasive bio-signal waveforms that change in real-time. In this retrospective study, we developed a deep learning-based algorithm (DLA) to predict intraoperative MT within 10 min. MT was defined as the transfusion of 3 or more units of red blood cells within an hour. The datasets consisted of 18,135 patients who underwent surgery at Seoul National University Hospital (SNUH) for model development and internal validation and 621 patients who underwent surgery at the Boramae Medical Center (BMC) for external validation. We constructed the DLA by using features extracted from plethysmography (collected at 500 Hz) and hematocrit measured during surgery. Among 18,135 patients in SNUH and 621 patients in BMC, 265 patients (1.46%) and 14 patients (2.25%) received MT during surgery, respectively. The area under the receiver operating characteristic curve (AUROC) of DLA predicting intraoperative MT before 10 min was 0.962 (95% confidence interval [CI], 0.948–0.974) in internal validation and 0.922 (95% CI, 0.882–0.959) in external validation, respectively. The DLA can successfully predict intraoperative MT using non-invasive bio-signal waveforms.</description><identifier>ISSN: 1532-0464</identifier><identifier>ISSN: 1532-0480</identifier><identifier>EISSN: 1532-0480</identifier><identifier>DOI: 10.1016/j.jbi.2024.104680</identifier><identifier>PMID: 38914411</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adult ; Aged ; Algorithms ; Artificial intelligence ; Biosignals ; Blood Loss, Surgical ; Blood Transfusion ; Deep Learning ; Female ; Hematocrit ; Hemodynamic Monitoring - methods ; Hemodynamics ; Humans ; Machine learning ; Male ; Massive transfusion ; Middle Aged ; Monitoring, Intraoperative - methods ; Non-invasive monitoring ; Photoplethysmogram ; Retrospective Studies ; ROC Curve</subject><ispartof>Journal of biomedical informatics, 2024-08, Vol.156, p.104680, Article 104680</ispartof><rights>2024 Elsevier Inc.</rights><rights>Copyright © 2024 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c235t-98723e5ec1b7caf2c7717a6c71dde5fc9d8ac9b7688ecc8df98a9673713787e63</cites><orcidid>0000-0003-0048-7958 ; 0000-0002-4586-5062 ; 0000-0002-6817-5793</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1532046424000984$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38914411$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kwon, Doyun</creatorcontrib><creatorcontrib>Mi Jung, Young</creatorcontrib><creatorcontrib>Lee, Hyung-Chul</creatorcontrib><creatorcontrib>Kyong Kim, Tae</creatorcontrib><creatorcontrib>Kim, Kwangsoo</creatorcontrib><creatorcontrib>Lee, Garam</creatorcontrib><creatorcontrib>Kim, Dokyoon</creatorcontrib><creatorcontrib>Lee, Seung-Bo</creatorcontrib><creatorcontrib>Mi Lee, Seung</creatorcontrib><title>Non-invasive prediction of massive transfusion during surgery using intraoperative hemodynamic monitoring data</title><title>Journal of biomedical informatics</title><addtitle>J Biomed Inform</addtitle><description>[Display omitted] Failure to receive prompt blood transfusion leads to severe complications if massive bleeding occurs during surgery. For the timely preparation of blood products, predicting the possibility of massive transfusion (MT) is essential to decrease morbidity and mortality. This study aimed to develop a model for predicting MT 10 min in advance using non-invasive bio-signal waveforms that change in real-time. In this retrospective study, we developed a deep learning-based algorithm (DLA) to predict intraoperative MT within 10 min. MT was defined as the transfusion of 3 or more units of red blood cells within an hour. The datasets consisted of 18,135 patients who underwent surgery at Seoul National University Hospital (SNUH) for model development and internal validation and 621 patients who underwent surgery at the Boramae Medical Center (BMC) for external validation. We constructed the DLA by using features extracted from plethysmography (collected at 500 Hz) and hematocrit measured during surgery. Among 18,135 patients in SNUH and 621 patients in BMC, 265 patients (1.46%) and 14 patients (2.25%) received MT during surgery, respectively. The area under the receiver operating characteristic curve (AUROC) of DLA predicting intraoperative MT before 10 min was 0.962 (95% confidence interval [CI], 0.948–0.974) in internal validation and 0.922 (95% CI, 0.882–0.959) in external validation, respectively. The DLA can successfully predict intraoperative MT using non-invasive bio-signal waveforms.</description><subject>Adult</subject><subject>Aged</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Biosignals</subject><subject>Blood Loss, Surgical</subject><subject>Blood Transfusion</subject><subject>Deep Learning</subject><subject>Female</subject><subject>Hematocrit</subject><subject>Hemodynamic Monitoring - methods</subject><subject>Hemodynamics</subject><subject>Humans</subject><subject>Machine learning</subject><subject>Male</subject><subject>Massive transfusion</subject><subject>Middle Aged</subject><subject>Monitoring, Intraoperative - methods</subject><subject>Non-invasive monitoring</subject><subject>Photoplethysmogram</subject><subject>Retrospective Studies</subject><subject>ROC Curve</subject><issn>1532-0464</issn><issn>1532-0480</issn><issn>1532-0480</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtOwzAQRS0EoqXwAWxQlmxSbOdhR6wQ4iVVsIG15diT4qqxi51U6t_jNKVLVvZcnTvSHISuCZ4TTMq71XxVmznFNI9zXnJ8gqakyGiKc45Pj_8yn6CLEFYYE1IU5TmaZLwieU7IFNl3Z1NjtzKYLSQbD9qozjibuCZpZdinnZc2NH0YYt17Y5dJ6P0S_C6JYZyMjYjbgJfdwH9D6_TOytaopHXWdG7f0bKTl-iskesAV4d3hr6enz4fX9PFx8vb48MiVTQrurTijGZQgCI1U7KhijHCZKkY0RqKRlWaS1XVrOQclOK6qbisSpYxkjHOoMxm6Hbcu_Hup4fQidYEBeu1tOD6IDLMKMaY0iKiZESVdyF4aMTGm1b6nSBYDJrFSkTNYtAsRs2xc3NY39ct6GPjz2sE7kcA4pFbA14EZcCqqNeD6oR25p_1v0aqkIo</recordid><startdate>202408</startdate><enddate>202408</enddate><creator>Kwon, Doyun</creator><creator>Mi Jung, Young</creator><creator>Lee, Hyung-Chul</creator><creator>Kyong Kim, Tae</creator><creator>Kim, Kwangsoo</creator><creator>Lee, Garam</creator><creator>Kim, Dokyoon</creator><creator>Lee, Seung-Bo</creator><creator>Mi Lee, Seung</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0048-7958</orcidid><orcidid>https://orcid.org/0000-0002-4586-5062</orcidid><orcidid>https://orcid.org/0000-0002-6817-5793</orcidid></search><sort><creationdate>202408</creationdate><title>Non-invasive prediction of massive transfusion during surgery using intraoperative hemodynamic monitoring data</title><author>Kwon, Doyun ; Mi Jung, Young ; Lee, Hyung-Chul ; Kyong Kim, Tae ; Kim, Kwangsoo ; Lee, Garam ; Kim, Dokyoon ; Lee, Seung-Bo ; Mi Lee, Seung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c235t-98723e5ec1b7caf2c7717a6c71dde5fc9d8ac9b7688ecc8df98a9673713787e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Biosignals</topic><topic>Blood Loss, Surgical</topic><topic>Blood Transfusion</topic><topic>Deep Learning</topic><topic>Female</topic><topic>Hematocrit</topic><topic>Hemodynamic Monitoring - methods</topic><topic>Hemodynamics</topic><topic>Humans</topic><topic>Machine learning</topic><topic>Male</topic><topic>Massive transfusion</topic><topic>Middle Aged</topic><topic>Monitoring, Intraoperative - methods</topic><topic>Non-invasive monitoring</topic><topic>Photoplethysmogram</topic><topic>Retrospective Studies</topic><topic>ROC Curve</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kwon, Doyun</creatorcontrib><creatorcontrib>Mi Jung, Young</creatorcontrib><creatorcontrib>Lee, Hyung-Chul</creatorcontrib><creatorcontrib>Kyong Kim, Tae</creatorcontrib><creatorcontrib>Kim, Kwangsoo</creatorcontrib><creatorcontrib>Lee, Garam</creatorcontrib><creatorcontrib>Kim, Dokyoon</creatorcontrib><creatorcontrib>Lee, Seung-Bo</creatorcontrib><creatorcontrib>Mi Lee, Seung</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kwon, Doyun</au><au>Mi Jung, Young</au><au>Lee, Hyung-Chul</au><au>Kyong Kim, Tae</au><au>Kim, Kwangsoo</au><au>Lee, Garam</au><au>Kim, Dokyoon</au><au>Lee, Seung-Bo</au><au>Mi Lee, Seung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-invasive prediction of massive transfusion during surgery using intraoperative hemodynamic monitoring data</atitle><jtitle>Journal of biomedical informatics</jtitle><addtitle>J Biomed Inform</addtitle><date>2024-08</date><risdate>2024</risdate><volume>156</volume><spage>104680</spage><pages>104680-</pages><artnum>104680</artnum><issn>1532-0464</issn><issn>1532-0480</issn><eissn>1532-0480</eissn><abstract>[Display omitted] Failure to receive prompt blood transfusion leads to severe complications if massive bleeding occurs during surgery. For the timely preparation of blood products, predicting the possibility of massive transfusion (MT) is essential to decrease morbidity and mortality. This study aimed to develop a model for predicting MT 10 min in advance using non-invasive bio-signal waveforms that change in real-time. In this retrospective study, we developed a deep learning-based algorithm (DLA) to predict intraoperative MT within 10 min. MT was defined as the transfusion of 3 or more units of red blood cells within an hour. The datasets consisted of 18,135 patients who underwent surgery at Seoul National University Hospital (SNUH) for model development and internal validation and 621 patients who underwent surgery at the Boramae Medical Center (BMC) for external validation. We constructed the DLA by using features extracted from plethysmography (collected at 500 Hz) and hematocrit measured during surgery. Among 18,135 patients in SNUH and 621 patients in BMC, 265 patients (1.46%) and 14 patients (2.25%) received MT during surgery, respectively. The area under the receiver operating characteristic curve (AUROC) of DLA predicting intraoperative MT before 10 min was 0.962 (95% confidence interval [CI], 0.948–0.974) in internal validation and 0.922 (95% CI, 0.882–0.959) in external validation, respectively. The DLA can successfully predict intraoperative MT using non-invasive bio-signal waveforms.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>38914411</pmid><doi>10.1016/j.jbi.2024.104680</doi><orcidid>https://orcid.org/0000-0003-0048-7958</orcidid><orcidid>https://orcid.org/0000-0002-4586-5062</orcidid><orcidid>https://orcid.org/0000-0002-6817-5793</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1532-0464
ispartof Journal of biomedical informatics, 2024-08, Vol.156, p.104680, Article 104680
issn 1532-0464
1532-0480
1532-0480
language eng
recordid cdi_proquest_miscellaneous_3072000225
source MEDLINE; Elsevier ScienceDirect Journals
subjects Adult
Aged
Algorithms
Artificial intelligence
Biosignals
Blood Loss, Surgical
Blood Transfusion
Deep Learning
Female
Hematocrit
Hemodynamic Monitoring - methods
Hemodynamics
Humans
Machine learning
Male
Massive transfusion
Middle Aged
Monitoring, Intraoperative - methods
Non-invasive monitoring
Photoplethysmogram
Retrospective Studies
ROC Curve
title Non-invasive prediction of massive transfusion during surgery using intraoperative hemodynamic monitoring data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T13%3A29%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-invasive%20prediction%20of%20massive%20transfusion%20during%20surgery%20using%20intraoperative%20hemodynamic%20monitoring%20data&rft.jtitle=Journal%20of%20biomedical%20informatics&rft.au=Kwon,%20Doyun&rft.date=2024-08&rft.volume=156&rft.spage=104680&rft.pages=104680-&rft.artnum=104680&rft.issn=1532-0464&rft.eissn=1532-0480&rft_id=info:doi/10.1016/j.jbi.2024.104680&rft_dat=%3Cproquest_cross%3E3072000225%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3072000225&rft_id=info:pmid/38914411&rft_els_id=S1532046424000984&rfr_iscdi=true