Non-invasive prediction of massive transfusion during surgery using intraoperative hemodynamic monitoring data
[Display omitted] Failure to receive prompt blood transfusion leads to severe complications if massive bleeding occurs during surgery. For the timely preparation of blood products, predicting the possibility of massive transfusion (MT) is essential to decrease morbidity and mortality. This study aim...
Gespeichert in:
Veröffentlicht in: | Journal of biomedical informatics 2024-08, Vol.156, p.104680, Article 104680 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 104680 |
container_title | Journal of biomedical informatics |
container_volume | 156 |
creator | Kwon, Doyun Mi Jung, Young Lee, Hyung-Chul Kyong Kim, Tae Kim, Kwangsoo Lee, Garam Kim, Dokyoon Lee, Seung-Bo Mi Lee, Seung |
description | [Display omitted]
Failure to receive prompt blood transfusion leads to severe complications if massive bleeding occurs during surgery. For the timely preparation of blood products, predicting the possibility of massive transfusion (MT) is essential to decrease morbidity and mortality. This study aimed to develop a model for predicting MT 10 min in advance using non-invasive bio-signal waveforms that change in real-time.
In this retrospective study, we developed a deep learning-based algorithm (DLA) to predict intraoperative MT within 10 min. MT was defined as the transfusion of 3 or more units of red blood cells within an hour. The datasets consisted of 18,135 patients who underwent surgery at Seoul National University Hospital (SNUH) for model development and internal validation and 621 patients who underwent surgery at the Boramae Medical Center (BMC) for external validation. We constructed the DLA by using features extracted from plethysmography (collected at 500 Hz) and hematocrit measured during surgery.
Among 18,135 patients in SNUH and 621 patients in BMC, 265 patients (1.46%) and 14 patients (2.25%) received MT during surgery, respectively. The area under the receiver operating characteristic curve (AUROC) of DLA predicting intraoperative MT before 10 min was 0.962 (95% confidence interval [CI], 0.948–0.974) in internal validation and 0.922 (95% CI, 0.882–0.959) in external validation, respectively.
The DLA can successfully predict intraoperative MT using non-invasive bio-signal waveforms. |
doi_str_mv | 10.1016/j.jbi.2024.104680 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3072000225</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1532046424000984</els_id><sourcerecordid>3072000225</sourcerecordid><originalsourceid>FETCH-LOGICAL-c235t-98723e5ec1b7caf2c7717a6c71dde5fc9d8ac9b7688ecc8df98a9673713787e63</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EoqXwAWxQlmxSbOdhR6wQ4iVVsIG15diT4qqxi51U6t_jNKVLVvZcnTvSHISuCZ4TTMq71XxVmznFNI9zXnJ8gqakyGiKc45Pj_8yn6CLEFYYE1IU5TmaZLwieU7IFNl3Z1NjtzKYLSQbD9qozjibuCZpZdinnZc2NH0YYt17Y5dJ6P0S_C6JYZyMjYjbgJfdwH9D6_TOytaopHXWdG7f0bKTl-iskesAV4d3hr6enz4fX9PFx8vb48MiVTQrurTijGZQgCI1U7KhijHCZKkY0RqKRlWaS1XVrOQclOK6qbisSpYxkjHOoMxm6Hbcu_Hup4fQidYEBeu1tOD6IDLMKMaY0iKiZESVdyF4aMTGm1b6nSBYDJrFSkTNYtAsRs2xc3NY39ct6GPjz2sE7kcA4pFbA14EZcCqqNeD6oR25p_1v0aqkIo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3072000225</pqid></control><display><type>article</type><title>Non-invasive prediction of massive transfusion during surgery using intraoperative hemodynamic monitoring data</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Kwon, Doyun ; Mi Jung, Young ; Lee, Hyung-Chul ; Kyong Kim, Tae ; Kim, Kwangsoo ; Lee, Garam ; Kim, Dokyoon ; Lee, Seung-Bo ; Mi Lee, Seung</creator><creatorcontrib>Kwon, Doyun ; Mi Jung, Young ; Lee, Hyung-Chul ; Kyong Kim, Tae ; Kim, Kwangsoo ; Lee, Garam ; Kim, Dokyoon ; Lee, Seung-Bo ; Mi Lee, Seung</creatorcontrib><description>[Display omitted]
Failure to receive prompt blood transfusion leads to severe complications if massive bleeding occurs during surgery. For the timely preparation of blood products, predicting the possibility of massive transfusion (MT) is essential to decrease morbidity and mortality. This study aimed to develop a model for predicting MT 10 min in advance using non-invasive bio-signal waveforms that change in real-time.
In this retrospective study, we developed a deep learning-based algorithm (DLA) to predict intraoperative MT within 10 min. MT was defined as the transfusion of 3 or more units of red blood cells within an hour. The datasets consisted of 18,135 patients who underwent surgery at Seoul National University Hospital (SNUH) for model development and internal validation and 621 patients who underwent surgery at the Boramae Medical Center (BMC) for external validation. We constructed the DLA by using features extracted from plethysmography (collected at 500 Hz) and hematocrit measured during surgery.
Among 18,135 patients in SNUH and 621 patients in BMC, 265 patients (1.46%) and 14 patients (2.25%) received MT during surgery, respectively. The area under the receiver operating characteristic curve (AUROC) of DLA predicting intraoperative MT before 10 min was 0.962 (95% confidence interval [CI], 0.948–0.974) in internal validation and 0.922 (95% CI, 0.882–0.959) in external validation, respectively.
The DLA can successfully predict intraoperative MT using non-invasive bio-signal waveforms.</description><identifier>ISSN: 1532-0464</identifier><identifier>ISSN: 1532-0480</identifier><identifier>EISSN: 1532-0480</identifier><identifier>DOI: 10.1016/j.jbi.2024.104680</identifier><identifier>PMID: 38914411</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adult ; Aged ; Algorithms ; Artificial intelligence ; Biosignals ; Blood Loss, Surgical ; Blood Transfusion ; Deep Learning ; Female ; Hematocrit ; Hemodynamic Monitoring - methods ; Hemodynamics ; Humans ; Machine learning ; Male ; Massive transfusion ; Middle Aged ; Monitoring, Intraoperative - methods ; Non-invasive monitoring ; Photoplethysmogram ; Retrospective Studies ; ROC Curve</subject><ispartof>Journal of biomedical informatics, 2024-08, Vol.156, p.104680, Article 104680</ispartof><rights>2024 Elsevier Inc.</rights><rights>Copyright © 2024 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c235t-98723e5ec1b7caf2c7717a6c71dde5fc9d8ac9b7688ecc8df98a9673713787e63</cites><orcidid>0000-0003-0048-7958 ; 0000-0002-4586-5062 ; 0000-0002-6817-5793</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1532046424000984$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38914411$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kwon, Doyun</creatorcontrib><creatorcontrib>Mi Jung, Young</creatorcontrib><creatorcontrib>Lee, Hyung-Chul</creatorcontrib><creatorcontrib>Kyong Kim, Tae</creatorcontrib><creatorcontrib>Kim, Kwangsoo</creatorcontrib><creatorcontrib>Lee, Garam</creatorcontrib><creatorcontrib>Kim, Dokyoon</creatorcontrib><creatorcontrib>Lee, Seung-Bo</creatorcontrib><creatorcontrib>Mi Lee, Seung</creatorcontrib><title>Non-invasive prediction of massive transfusion during surgery using intraoperative hemodynamic monitoring data</title><title>Journal of biomedical informatics</title><addtitle>J Biomed Inform</addtitle><description>[Display omitted]
Failure to receive prompt blood transfusion leads to severe complications if massive bleeding occurs during surgery. For the timely preparation of blood products, predicting the possibility of massive transfusion (MT) is essential to decrease morbidity and mortality. This study aimed to develop a model for predicting MT 10 min in advance using non-invasive bio-signal waveforms that change in real-time.
In this retrospective study, we developed a deep learning-based algorithm (DLA) to predict intraoperative MT within 10 min. MT was defined as the transfusion of 3 or more units of red blood cells within an hour. The datasets consisted of 18,135 patients who underwent surgery at Seoul National University Hospital (SNUH) for model development and internal validation and 621 patients who underwent surgery at the Boramae Medical Center (BMC) for external validation. We constructed the DLA by using features extracted from plethysmography (collected at 500 Hz) and hematocrit measured during surgery.
Among 18,135 patients in SNUH and 621 patients in BMC, 265 patients (1.46%) and 14 patients (2.25%) received MT during surgery, respectively. The area under the receiver operating characteristic curve (AUROC) of DLA predicting intraoperative MT before 10 min was 0.962 (95% confidence interval [CI], 0.948–0.974) in internal validation and 0.922 (95% CI, 0.882–0.959) in external validation, respectively.
The DLA can successfully predict intraoperative MT using non-invasive bio-signal waveforms.</description><subject>Adult</subject><subject>Aged</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Biosignals</subject><subject>Blood Loss, Surgical</subject><subject>Blood Transfusion</subject><subject>Deep Learning</subject><subject>Female</subject><subject>Hematocrit</subject><subject>Hemodynamic Monitoring - methods</subject><subject>Hemodynamics</subject><subject>Humans</subject><subject>Machine learning</subject><subject>Male</subject><subject>Massive transfusion</subject><subject>Middle Aged</subject><subject>Monitoring, Intraoperative - methods</subject><subject>Non-invasive monitoring</subject><subject>Photoplethysmogram</subject><subject>Retrospective Studies</subject><subject>ROC Curve</subject><issn>1532-0464</issn><issn>1532-0480</issn><issn>1532-0480</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtOwzAQRS0EoqXwAWxQlmxSbOdhR6wQ4iVVsIG15diT4qqxi51U6t_jNKVLVvZcnTvSHISuCZ4TTMq71XxVmznFNI9zXnJ8gqakyGiKc45Pj_8yn6CLEFYYE1IU5TmaZLwieU7IFNl3Z1NjtzKYLSQbD9qozjibuCZpZdinnZc2NH0YYt17Y5dJ6P0S_C6JYZyMjYjbgJfdwH9D6_TOytaopHXWdG7f0bKTl-iskesAV4d3hr6enz4fX9PFx8vb48MiVTQrurTijGZQgCI1U7KhijHCZKkY0RqKRlWaS1XVrOQclOK6qbisSpYxkjHOoMxm6Hbcu_Hup4fQidYEBeu1tOD6IDLMKMaY0iKiZESVdyF4aMTGm1b6nSBYDJrFSkTNYtAsRs2xc3NY39ct6GPjz2sE7kcA4pFbA14EZcCqqNeD6oR25p_1v0aqkIo</recordid><startdate>202408</startdate><enddate>202408</enddate><creator>Kwon, Doyun</creator><creator>Mi Jung, Young</creator><creator>Lee, Hyung-Chul</creator><creator>Kyong Kim, Tae</creator><creator>Kim, Kwangsoo</creator><creator>Lee, Garam</creator><creator>Kim, Dokyoon</creator><creator>Lee, Seung-Bo</creator><creator>Mi Lee, Seung</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0048-7958</orcidid><orcidid>https://orcid.org/0000-0002-4586-5062</orcidid><orcidid>https://orcid.org/0000-0002-6817-5793</orcidid></search><sort><creationdate>202408</creationdate><title>Non-invasive prediction of massive transfusion during surgery using intraoperative hemodynamic monitoring data</title><author>Kwon, Doyun ; Mi Jung, Young ; Lee, Hyung-Chul ; Kyong Kim, Tae ; Kim, Kwangsoo ; Lee, Garam ; Kim, Dokyoon ; Lee, Seung-Bo ; Mi Lee, Seung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c235t-98723e5ec1b7caf2c7717a6c71dde5fc9d8ac9b7688ecc8df98a9673713787e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Biosignals</topic><topic>Blood Loss, Surgical</topic><topic>Blood Transfusion</topic><topic>Deep Learning</topic><topic>Female</topic><topic>Hematocrit</topic><topic>Hemodynamic Monitoring - methods</topic><topic>Hemodynamics</topic><topic>Humans</topic><topic>Machine learning</topic><topic>Male</topic><topic>Massive transfusion</topic><topic>Middle Aged</topic><topic>Monitoring, Intraoperative - methods</topic><topic>Non-invasive monitoring</topic><topic>Photoplethysmogram</topic><topic>Retrospective Studies</topic><topic>ROC Curve</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kwon, Doyun</creatorcontrib><creatorcontrib>Mi Jung, Young</creatorcontrib><creatorcontrib>Lee, Hyung-Chul</creatorcontrib><creatorcontrib>Kyong Kim, Tae</creatorcontrib><creatorcontrib>Kim, Kwangsoo</creatorcontrib><creatorcontrib>Lee, Garam</creatorcontrib><creatorcontrib>Kim, Dokyoon</creatorcontrib><creatorcontrib>Lee, Seung-Bo</creatorcontrib><creatorcontrib>Mi Lee, Seung</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kwon, Doyun</au><au>Mi Jung, Young</au><au>Lee, Hyung-Chul</au><au>Kyong Kim, Tae</au><au>Kim, Kwangsoo</au><au>Lee, Garam</au><au>Kim, Dokyoon</au><au>Lee, Seung-Bo</au><au>Mi Lee, Seung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-invasive prediction of massive transfusion during surgery using intraoperative hemodynamic monitoring data</atitle><jtitle>Journal of biomedical informatics</jtitle><addtitle>J Biomed Inform</addtitle><date>2024-08</date><risdate>2024</risdate><volume>156</volume><spage>104680</spage><pages>104680-</pages><artnum>104680</artnum><issn>1532-0464</issn><issn>1532-0480</issn><eissn>1532-0480</eissn><abstract>[Display omitted]
Failure to receive prompt blood transfusion leads to severe complications if massive bleeding occurs during surgery. For the timely preparation of blood products, predicting the possibility of massive transfusion (MT) is essential to decrease morbidity and mortality. This study aimed to develop a model for predicting MT 10 min in advance using non-invasive bio-signal waveforms that change in real-time.
In this retrospective study, we developed a deep learning-based algorithm (DLA) to predict intraoperative MT within 10 min. MT was defined as the transfusion of 3 or more units of red blood cells within an hour. The datasets consisted of 18,135 patients who underwent surgery at Seoul National University Hospital (SNUH) for model development and internal validation and 621 patients who underwent surgery at the Boramae Medical Center (BMC) for external validation. We constructed the DLA by using features extracted from plethysmography (collected at 500 Hz) and hematocrit measured during surgery.
Among 18,135 patients in SNUH and 621 patients in BMC, 265 patients (1.46%) and 14 patients (2.25%) received MT during surgery, respectively. The area under the receiver operating characteristic curve (AUROC) of DLA predicting intraoperative MT before 10 min was 0.962 (95% confidence interval [CI], 0.948–0.974) in internal validation and 0.922 (95% CI, 0.882–0.959) in external validation, respectively.
The DLA can successfully predict intraoperative MT using non-invasive bio-signal waveforms.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>38914411</pmid><doi>10.1016/j.jbi.2024.104680</doi><orcidid>https://orcid.org/0000-0003-0048-7958</orcidid><orcidid>https://orcid.org/0000-0002-4586-5062</orcidid><orcidid>https://orcid.org/0000-0002-6817-5793</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1532-0464 |
ispartof | Journal of biomedical informatics, 2024-08, Vol.156, p.104680, Article 104680 |
issn | 1532-0464 1532-0480 1532-0480 |
language | eng |
recordid | cdi_proquest_miscellaneous_3072000225 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Adult Aged Algorithms Artificial intelligence Biosignals Blood Loss, Surgical Blood Transfusion Deep Learning Female Hematocrit Hemodynamic Monitoring - methods Hemodynamics Humans Machine learning Male Massive transfusion Middle Aged Monitoring, Intraoperative - methods Non-invasive monitoring Photoplethysmogram Retrospective Studies ROC Curve |
title | Non-invasive prediction of massive transfusion during surgery using intraoperative hemodynamic monitoring data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T13%3A29%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-invasive%20prediction%20of%20massive%20transfusion%20during%20surgery%20using%20intraoperative%20hemodynamic%20monitoring%20data&rft.jtitle=Journal%20of%20biomedical%20informatics&rft.au=Kwon,%20Doyun&rft.date=2024-08&rft.volume=156&rft.spage=104680&rft.pages=104680-&rft.artnum=104680&rft.issn=1532-0464&rft.eissn=1532-0480&rft_id=info:doi/10.1016/j.jbi.2024.104680&rft_dat=%3Cproquest_cross%3E3072000225%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3072000225&rft_id=info:pmid/38914411&rft_els_id=S1532046424000984&rfr_iscdi=true |