Hyaluronate loaded advanced wound dressing in form of in situ forming hydrogel powders: Formulation, characterization, and therapeutic potential
In this paper, a blend composed of alginate-pectin-chitosan loaded with sodium hyaluronate in the form of an in situ forming dressing was successfully developed for wound repair applications. This complex polymeric blend has been efficiently used to encapsulate hyaluronate, forming an adhesive, flex...
Gespeichert in:
Veröffentlicht in: | International journal of biological macromolecules 2024-08, Vol.274 (Pt 2), p.133192, Article 133192 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, a blend composed of alginate-pectin-chitosan loaded with sodium hyaluronate in the form of an in situ forming dressing was successfully developed for wound repair applications. This complex polymeric blend has been efficiently used to encapsulate hyaluronate, forming an adhesive, flexible, and non-occlusive hydrogel able to uptake to 15 times its weight in wound fluid, and being removed without trauma from the wound site. Calorimetric and FT-IR studies confirmed chemical interactions between hyaluronate and polysaccharides blend, primarily related to the formation of a polyelectrolytic complex between hyaluronate and chitosan. In vivo wound healing assays on murine models highlighted the ability of the loaded hydrogels to significantly accelerate wound healing compared to a hyaluronic-loaded ointment. This was evident through complete wound closure in |
---|---|
ISSN: | 0141-8130 1879-0003 1879-0003 |
DOI: | 10.1016/j.ijbiomac.2024.133192 |