MLKL regulates radiation-induced death in breast cancer cells: an interplay between apoptotic and necroptotic signals

Resistance to caspase-dependent apoptosis is often responsible for treatments failure in cancer. Necroptosis is a type of programmed necrosis that occurs under caspase-deficient conditions that could overcome apoptosis resistance. Our purpose was to investigate the interrelationship between apoptoti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical oncology (Northwood, London, England) London, England), 2024-06, Vol.41 (7), p.172, Article 172
Hauptverfasser: El Feky, Shaymaa E., Fakhry, Karen Adel, Hussain, Amr M., Ibrahim, Fawziya A. R., Morsi, Mohamed Ibrahim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Resistance to caspase-dependent apoptosis is often responsible for treatments failure in cancer. Necroptosis is a type of programmed necrosis that occurs under caspase-deficient conditions that could overcome apoptosis resistance. Our purpose was to investigate the interrelationship between apoptotic and necroptotic death pathways and their influence on the response of breast cancer cells to radiotherapy in vitro. Human BC cell lines MCF-7 and MDA-MB-231 were treated with ionizing radiation, and then several markers of apoptosis, necroptosis, and survival were assessed in the presence and absence of necroptosis inhibition. MLKL knockdown was achieved by siRNA transfection. Our main findings emphasize the role of necroptosis in cellular response to radiation represented in the dose- and time-dependent elevated expression of necroptotic markers RIPK1, RIPK3, and MLKL. Knockdown of necroptotic marker MLKL by siRNA led to a significant elevation in MDA-MB-231 and MCF-7 survival with a dose modifying factor (DMF) of 1.23 and 1.61, respectively. Apoptotic markers Caspase 8 and TRADD showed transitory or delayed upregulation, indicating that apoptosis was not the main mechanism by which cells respond to radiation exposure. Apoptotic markers also showed a significant elevation following MLKL knockdown, suggesting its role either as a secondary or death alternative pathway. The result of our study emphasizes the critical role of the necroptotic pathway in regulating breast cancer cells responses to radiotherapy and suggests a promising utilization of its key modulator, MLKL, as a treatment strategy to improve the response to radiotherapy.
ISSN:1559-131X
1357-0560
1559-131X
DOI:10.1007/s12032-024-02415-4