Multifunctional magnetic tags with photocatalytic and enzyme-mimicking properties for constructing a sensitive dual-readout ELISA
ELISA has become the gold standard for detecting harmful substances due to its specific antibody recognition and sensitive enzyme-catalyzed reactions. In this study, multifunctional magnetic Prussian blue nanolabels (MPBNs) were synthesized using a simple gentle two-step method to achieve a dual-rea...
Gespeichert in:
Veröffentlicht in: | Food chemistry 2024-11, Vol.457, p.140085, Article 140085 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | ELISA has become the gold standard for detecting harmful substances due to its specific antibody recognition and sensitive enzyme-catalyzed reactions. In this study, multifunctional magnetic Prussian blue nanolabels (MPBNs) were synthesized using a simple gentle two-step method to achieve a dual-readout mode. The MPBNs provide a sensitive colorimetric signal by efficiently catalyzing the oxidation of TMB and exhibit prominent photocatalytic degradation activity towards Rhodamine B (RhB). Supplemented by the quenching effect of oxTMB, the fluorescence was enabled to serve as a sensitive second signal. The magnetic property of the labels facilitates the separation and enrichment of the target, thereby improving sensitivity. Utilizing the versatile MPBNs, the visual limit of detection (vLOD) for Staphylococcus aureus is as low as 100 CFU/mL, with a quantitative analysis range of 102–108 CFU/mL. The introduction of photocatalytic reactions into immunoassay has opened up a new signal response system with strong momentum for development and application.
•A multifunctional magnetic probe was constructed with peroxidase activity and photocatalytic ability.•Colorimetric and fluorescent dual-mode ELISA was developed for sensitive pathogen detection.•This work is poised to advance the utilization of photocatalytic active materials in immunosensors. |
---|---|
ISSN: | 0308-8146 1873-7072 1873-7072 |
DOI: | 10.1016/j.foodchem.2024.140085 |