Effects of nZVI on the migration and availability of Cr(VI) in soils under simulated acid rain leaching conditions
Hexavalent chromium, Cr(VI), is a ubiquitous toxic metal that can be reduced to Cr(III) by nano-zero-valent iron (nZVI). Finding out effects of continuous rainfall leaching on the Cr(VI) release and availability remains a problem, needing to be addressed. Whether the Cr(VI) reduction by nZVI and con...
Gespeichert in:
Veröffentlicht in: | Journal of hazardous materials 2024-09, Vol.476, p.134985, Article 134985 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Hexavalent chromium, Cr(VI), is a ubiquitous toxic metal that can be reduced to Cr(III) by nano-zero-valent iron (nZVI). Finding out effects of continuous rainfall leaching on the Cr(VI) release and availability remains a problem, needing to be addressed. Whether the Cr(VI) reduction by nZVI and continuous rainfall leaching lead to localized heterogeneity in soil is unclear. Therefore, two in situ high-resolution (HR) techniques of the diffusive gradients in thin-films (DGT) and planar optode were combined with ex situ sampling experiments here. Results demonstrate that nZVI decreased Cr(VI) leaching by 5.60–8.50 % compared to control soils. DGT-measured concentrations of Cr(VI), CDGT-Cr(VI), ranged from 7.31 to 19.4 μg L-1 in the control soils, increasing with depth while CDGT-Cr(VI) in nZVI-treated soils (2.41–6.18 μg L-1) decreased or remained stable with depth. However, simulated acid-rain leaching increases CDGT-Cr(VI) by 1.61-fold in nZVI-treated soils, negatively affecting the remediation. DGT measurements in bulk soils using disc devices are better at capturing the change of Cr(VI) availability at different conditions, whereas 2D-HR DGT mappings did not characterize significant mobilization of Cr(VI) at the micro-scale. These findings emphasize the importance of monitoring Cr(VI) release and availability in remediated soil under acid-rain leaching conditions for effective environment management.
[Display omitted]
•Investigate soil dynamic under acid rain leaching using an in situ deployment system.•Significant decreases in Cr(VI) availability observed in nZVI-treated soils.•Long-term acid rain leaching increased the Cr(VI) resupply potential in soils.•2D distribution of Cr(VI) availability in leaching soil columns was revealed.•No significant hotspots of labile Cr(VI) in nZVI-treated soils after leaching. |
---|---|
ISSN: | 0304-3894 1873-3336 1873-3336 |
DOI: | 10.1016/j.jhazmat.2024.134985 |