Construction of hollow sphere MnOX with abundant oxygen vacancy for accelerating VOCs degradation: Investigation through operando spectroscopycombined with on-line mass spectrometry
[Display omitted] •MnOX catalysts with tunable morphology and oxygen vacancy defects were prepared.•Tailoring the morphology of MnOX can greatly improve the catalytic activity.•The oxygen vacancy defect on MnOX can expedite the activation-oxidation of toluene. To clarify the key role of oxygen vacan...
Gespeichert in:
Veröffentlicht in: | Journal of colloid and interface science 2024-11, Vol.673, p.746-755 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
•MnOX catalysts with tunable morphology and oxygen vacancy defects were prepared.•Tailoring the morphology of MnOX can greatly improve the catalytic activity.•The oxygen vacancy defect on MnOX can expedite the activation-oxidation of toluene.
To clarify the key role of oxygen vacancy defects on enhancing the oxidative activity of the catalysts, metal–organic frameworks (MOFs) derived MnOX catalysts with different morphologies and oxygen vacancy defects were successfully prepared using a facile in-situ self-assembly strategy with different alkali moderators. The obtained morphologies included three-dimensional (3D) triangular cone stacked MnOX hollow sphere (MnOX-H) and 3D nanoparticle stacked MnOX nanosphere (MnOX-N). Compared to MnOX-N, MnOX-H exhibited higher activity for the oxidation of toluene (T90 = 226 °C). This was mainly due to the large number of oxygen vacancy defects and Mn4+ species in the MnOX-H catalyst. In addition, the hollow structure of MnOX-H not only facilitated toluene adsorption and activation of toluene and also provided more active sites for toluene oxidation. Reaction mechanism studies showed that the conversion of toluene to benzoate could be realized over MnOX-H catalyst during toluene adsorption at room temperature. In addition, abundant oxygen vacancy defects can accelerate the activated oxidation of toluene and the formation of oxidation products during toluene oxidation. |
---|---|
ISSN: | 0021-9797 1095-7103 1095-7103 |
DOI: | 10.1016/j.jcis.2024.06.117 |