Taking inspiration from the natural tubular sponge to enhance momentum exchange in marine environments

Coral reefs consist of various alive elements with specific biological functions. Tubular sponges, as the main coral reefs' constituents, have a marvelous mechanism. They receive nutrients by suctioning from the perforated body (Ostia) and pumping the un-digested materials through the water col...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2024-10, Vol.945, p.174070, Article 174070
Hauptverfasser: Hashempour, Masoumeh, Kolahdoozan, Morteza
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Coral reefs consist of various alive elements with specific biological functions. Tubular sponges, as the main coral reefs' constituents, have a marvelous mechanism. They receive nutrients by suctioning from the perforated body (Ostia) and pumping the un-digested materials through the water column from the top mouth (Osculum). This mechanism can be an inspiration for making a device to control or improve sediment/pollutant transport. In the current study, an attempt has been made to evaluate an inspired concept's effects on flow hydrodynamics. In this regard, OpenFOAM® V. 1812 (interFOAM solver) and image processing technique were deployed. The perforated finite-height cylinders (height to diameter ratio of 2.5) with various suction/pump discharges (i.e., J = 150, 300, 350, 400, 450, and 600 lit/h) were considered. The results indicated that increasing the outflow discharge (J ≥ 600 lit/h) could widen the wake by flapping the shear layer. In the vertical plane, the results showed that dipole vortices turned into quadrupole vortex. On the free surface, tip-vortices and counter-rotating vortex pairs (CRVP) generated saw-toothed vortices on two sides of the cylinder. Generating these unique vortices is proof of enhancing the momentum exchange through the water column. [Display omitted] •The suction/pumping causes vortex streets types I, II, and III to emerge.•Tip vortex and CRVP generate a saw-toothed vortex on the free surface.•The wake widening occurred for sponges with high outflow discharge.•Numerical experiments were performed by OpenFOAM software.•An image processing technique was deployed to capture the re-circulation zones.
ISSN:0048-9697
1879-1026
1879-1026
DOI:10.1016/j.scitotenv.2024.174070