Structural relationship of regioselectively-sulfonated botryosphaeran derivatives on activity against herpes simplex virus type 1

The bioactivities of sulfonated polysaccharides are frequently related to their substitution pattern. In this study, the regioselective sulfonation of an exocellular fungal (1→3)(1→6)-β-D-glucan (botryosphaeran) was performed by two different methods: mild sulfonation (MS) and via pivaloyl ester (PS...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of biological macromolecules 2024-08, Vol.274 (Pt 1), p.133261, Article 133261
Hauptverfasser: Calegari, Gabrielle Cristina, Barboza, Mario Gabriel Lopes, Dyna, André Luiz, Barbosa-Dekker, Aneli M., Dekker, Robert F.H., Faccin-Galhardi, Lígia Carla, Orsato, Alexandre
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The bioactivities of sulfonated polysaccharides are frequently related to their substitution pattern. In this study, the regioselective sulfonation of an exocellular fungal (1→3)(1→6)-β-D-glucan (botryosphaeran) was performed by two different methods: mild sulfonation (MS) and via pivaloyl ester (PS), in order to study the influence of the sulfonation pattern on the antiviral activity of the respective derivatives. Two sulfonated derivatives with substitution degrees of 0.82 (MS) and 0.49 (PS) were obtained, with substitution patterns at positions C-6, and C-2/C-4 of the glucose units, respectively. All derivatives were chemically characterized and evaluated for antiviral activity against Herpes simplex virus type 1 (HSV-1) KOS strain, and dengue type 2 (DENV-2). The sample sulfonated at positions C-6 (MS) showed a remarkable antiviral effect on HSV-1 (IC50 of 5.38 μg mL1), while PS remained inactive. The investigation of the mode of action of sample MS pointed to the inhibition of HSV-1 adsorption to the host cells. Both samples were inactive towards the dengue virus strain. This study demonstrated that the presence of sulfate groups at the C-6 positions of botryosphaeran is the preferred substitution pattern that enables the antiviral activity towards HSV-1. [Display omitted] •Botryosphaeran was regioselectively sulfonated by two different strategies•Relationship between sulfate groups positioning and antiherpetic activity evaluated•Sulfate groups at glucose C-6 are preferred over C-2/C-4 for anti-HSV-1 activity
ISSN:0141-8130
1879-0003
1879-0003
DOI:10.1016/j.ijbiomac.2024.133261