Entropy-Driven Hybrid Gel Electrolyte Enables Practical High-Voltage Lithium Metal Batteries
Electrolyte engineering plays a crucial role in enhancing the performance of lithium metal batteries (LMBs) featuring high-voltage cathodes and limited lithium anodes, thereby unlocking their potential for high-energy electrochemical storage. Herein, an entropy-driven hybrid gel electrolyte with enh...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2024-07, Vol.16 (26), p.33647-33656 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Electrolyte engineering plays a crucial role in enhancing the performance of lithium metal batteries (LMBs) featuring high-voltage cathodes and limited lithium anodes, thereby unlocking their potential for high-energy electrochemical storage. Herein, an entropy-driven hybrid gel electrolyte with enhanced diversity in Li-ion solvation structures is designed by incorporating substantial amounts of insoluble LiPO2F2 and LiNO3 salts into LiPF6-based carbonate electrolytes, followed by in situ thermal polymerization. Specifically, the Li+ solvation structures are modulated via ionophilic NO3 – and PO2F2 – to generate an anion-rich solvation sheath and thus promote anion reduction at the electrode–electrolyte interface. The interfaces enriched in anion-derived inorganic components facilitate rapid ionic transport, thus enabling smooth and dense Li morphology and ultimately enhancing the electrochemical performance of LMBs. As a result, this high-hybrid gel electrolyte confers LMBs employing high-voltage NCM cathodes, as demonstrated by sustained performance in both coin-cell (500 cycles at 4.5 V) and Ah-level pouch cell configurations under practical conditions (60 cycles, N/P: 1.92, and E/C: 2.0 g Ah –1). |
---|---|
ISSN: | 1944-8244 1944-8252 1944-8252 |
DOI: | 10.1021/acsami.4c06826 |