A pathologist-AI collaboration framework for enhancing diagnostic accuracies and efficiencies

In pathology, the deployment of artificial intelligence (AI) in clinical settings is constrained by limitations in data collection and in model transparency and interpretability. Here we describe a digital pathology framework, nuclei.io, that incorporates active learning and human-in-the-loop real-t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature biomedical engineering 2024-06
Hauptverfasser: Huang, Zhi, Yang, Eric, Shen, Jeanne, Gratzinger, Dita, Eyerer, Frederick, Liang, Brooke, Nirschl, Jeffrey, Bingham, David, Dussaq, Alex M, Kunder, Christian, Rojansky, Rebecca, Gilbert, Aubre, Chang-Graham, Alexandra L, Howitt, Brooke E, Liu, Ying, Ryan, Emily E, Tenney, Troy B, Zhang, Xiaoming, Folkins, Ann, Fox, Edward J, Montine, Kathleen S, Montine, Thomas J, Zou, James
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In pathology, the deployment of artificial intelligence (AI) in clinical settings is constrained by limitations in data collection and in model transparency and interpretability. Here we describe a digital pathology framework, nuclei.io, that incorporates active learning and human-in-the-loop real-time feedback for the rapid creation of diverse datasets and models. We validate the effectiveness of the framework via two crossover user studies that leveraged collaboration between the AI and the pathologist, including the identification of plasma cells in endometrial biopsies and the detection of colorectal cancer metastasis in lymph nodes. In both studies, nuclei.io yielded considerable diagnostic performance improvements. Collaboration between clinicians and AI will aid digital pathology by enhancing accuracies and efficiencies.
ISSN:2157-846X
2157-846X
DOI:10.1038/s41551-024-01223-5