Biomechanical and histological changes associated with riboflavin ultraviolet-A-induced CXL with different irradiances in young human corneal stroma

Keratoconus (KC) is a degenerative condition affecting the cornea, characterized by progressive thinning and bulging, which can ultimately result in serious visual impairment. The onset and progression of KC are closely tied to the gradual weakening of the cornea's biomechanical properties. KC...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers in biology and medicine 2024-08, Vol.178, p.108607, Article 108607
Hauptverfasser: Fan, YiWen, Hong, YuXin, Bao, Han, Huang, YunYun, Zhang, Pei, Zhu, DeXi, Jiang, QiuRuo, Zuo, Yi, Swain, Michael, Elsheikh, Ahmed, Chen, ShiHao, Zheng, XiaoBo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Keratoconus (KC) is a degenerative condition affecting the cornea, characterized by progressive thinning and bulging, which can ultimately result in serious visual impairment. The onset and progression of KC are closely tied to the gradual weakening of the cornea's biomechanical properties. KC progression can be prevented with corneal cross-linking (CXL), but this treatment has shortcomings, and evaluating its tissue stiffening effect is important for determining its efficacy. In this field, the shortage of human corneas has made it necessary for most previous studies to rely on animal corneas, which have different microstructure and may be affected differently from human corneas. In this research, we have used the lenticules obtained through small incision lenticule extraction (SMILE) surgeries as a source of human tissue to assess CXL. And to further improve the results' reliability, we used inflation testing, personalized finite element modeling, numerical optimization and histology microstructure analysis. These methods enabled determining the biomechanical and histological effects of CXL protocols involving different irradiation intensities of 3, 9, 18, and 30 mW/cm2, all delivering the same total energy dose of 5.4 J/cm2. The results showed that the CXL effect did not vary significantly with protocols using 3–18 mW/cm2 irradiance, but there was a significant efficacy drop with 30 mW/cm2 irradiance. This study validated the updated algorithm and provided guidance for corneal lenticule reuse and the effects of different CXL protocols on the biomechanical properties of the human corneal stroma. •There was no difference in the stiffening effect of the anterior cornea for 3-18 mW/cm2 with the same energy of 5.4 J/cm2.
ISSN:0010-4825
1879-0534
1879-0534
DOI:10.1016/j.compbiomed.2024.108607