Underestimation of Flow Velocity in 2-D Super-Resolution Ultrasound Imaging

Velocity estimation in ultrasound imaging is a technique to measure the speed and direction of blood flow. The flow velocity in small blood vessels, i.e., arterioles, venules, and capillaries, can be estimated using super-resolution ultrasound imaging (SRUS). However, the vessel width in SRUS is rel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2024-12, Vol.71 (12: Breaking the Resolution Barrier in Ultrasound), p.1844-1854
Hauptverfasser: Amin Naji, Mostafa, Taghavi, Iman, Vilain Thomsen, Erik, Bent Larsen, Niels, Arendt Jensen, Jorgen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1854
container_issue 12: Breaking the Resolution Barrier in Ultrasound
container_start_page 1844
container_title IEEE transactions on ultrasonics, ferroelectrics, and frequency control
container_volume 71
creator Amin Naji, Mostafa
Taghavi, Iman
Vilain Thomsen, Erik
Bent Larsen, Niels
Arendt Jensen, Jorgen
description Velocity estimation in ultrasound imaging is a technique to measure the speed and direction of blood flow. The flow velocity in small blood vessels, i.e., arterioles, venules, and capillaries, can be estimated using super-resolution ultrasound imaging (SRUS). However, the vessel width in SRUS is relatively small compared with the full-width-half-maximum of the ultrasound beam in the elevation direction, which directly impacts the velocity estimation. By taking into consideration the small vessel widths in SRUS, it is hypothesized that the velocity is underestimated in 2-D SRUS when the vessel diameter is smaller than the full width at half maximum elevation resolution of the transducer (FWHMy). A theoretical model is introduced to show that the velocity of a 3-D parabolic velocity profile is underestimated by up to 33% in 2-D SRUS, if the width of the vessel is smaller than FWHMy. This model was tested using Field II simulations and 3-D-printed micro-flow hydrogel phantom measurements. A Verasonics Vantage 256 scanner and a GE L8-18i-D linear array transducer with FWHMy of approximately 770~\mu {m} at the elevation focus were used in the simulations and measurements. Simulations of different parabolic velocity profiles showed that the velocity underestimation was 36.8% \pm ~1.5 % (mean ± standard deviation). The measurements showed that the velocity was underestimated by 30% \pm ~6.9 %. Moreover, the results of vessel diameters, ranging from 0.125\times FWHMy to 3\times FWHMy, indicate that velocities are estimated according to the theoretical model. The theoretical model can, therefore, be used for the compensation of velocity estimates under these circumstances.
doi_str_mv 10.1109/TUFFC.2024.3416512
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_3070822026</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10562351</ieee_id><sourcerecordid>3070822026</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-e174b5fecf33d3aa6120d9e96d6fe1cd7bbbcd13077a9ea710adf88b7c2e6ff23</originalsourceid><addsrcrecordid>eNpdkF1LwzAYhYMobk7_gIgUvPGmMx9Nm17KdDocCLp5G9Lmzejompm0yP692YciXp2b5xwOD0KXBA8JwfndbD4ej4YU02TIEpJyQo9Qn3DKY5Fzfoz6WAgeM0xwD515v8SYJElOT1GPCZGnnIo-epk3Ghz4tlqptrJNZE00ru1X9AG1Lat2E1VNROOH6L1bg4vfwNu624HzunXK267R0WSlFlWzOEcnRtUeLg45QPPx42z0HE9fnyaj-2lcMszaGEiWFNxAaRjTTKmUUKxzyFOdGiClzoqiKDVhOMtUDiojWGkjRJGVFFJjKBug2_3u2tnPLnyXq8qXUNeqAdt5GZpY0OAlDejNP3RpO9eEd5IFUxnnlOBA0T1VOuu9AyPXLvhwG0mw3KqWO9Vyq1oeVIfS9WG6K1agfys_bgNwtQcqAPizyFPKOGHfG5OCwQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3152755210</pqid></control><display><type>article</type><title>Underestimation of Flow Velocity in 2-D Super-Resolution Ultrasound Imaging</title><source>IEEE Electronic Library (IEL)</source><creator>Amin Naji, Mostafa ; Taghavi, Iman ; Vilain Thomsen, Erik ; Bent Larsen, Niels ; Arendt Jensen, Jorgen</creator><creatorcontrib>Amin Naji, Mostafa ; Taghavi, Iman ; Vilain Thomsen, Erik ; Bent Larsen, Niels ; Arendt Jensen, Jorgen</creatorcontrib><description><![CDATA[Velocity estimation in ultrasound imaging is a technique to measure the speed and direction of blood flow. The flow velocity in small blood vessels, i.e., arterioles, venules, and capillaries, can be estimated using super-resolution ultrasound imaging (SRUS). However, the vessel width in SRUS is relatively small compared with the full-width-half-maximum of the ultrasound beam in the elevation direction, which directly impacts the velocity estimation. By taking into consideration the small vessel widths in SRUS, it is hypothesized that the velocity is underestimated in 2-D SRUS when the vessel diameter is smaller than the full width at half maximum elevation resolution of the transducer (FWHMy). A theoretical model is introduced to show that the velocity of a 3-D parabolic velocity profile is underestimated by up to 33% in 2-D SRUS, if the width of the vessel is smaller than FWHMy. This model was tested using Field II simulations and 3-D-printed micro-flow hydrogel phantom measurements. A Verasonics Vantage 256 scanner and a GE L8-18i-D linear array transducer with FWHMy of approximately <inline-formula> <tex-math notation="LaTeX">770~\mu {m} </tex-math></inline-formula> at the elevation focus were used in the simulations and measurements. Simulations of different parabolic velocity profiles showed that the velocity underestimation was 36.8% <inline-formula> <tex-math notation="LaTeX">\pm ~1.5 </tex-math></inline-formula>% (mean ± standard deviation). The measurements showed that the velocity was underestimated by 30% <inline-formula> <tex-math notation="LaTeX">\pm ~6.9 </tex-math></inline-formula>%. Moreover, the results of vessel diameters, ranging from <inline-formula> <tex-math notation="LaTeX">0.125\times </tex-math></inline-formula> FWHMy to <inline-formula> <tex-math notation="LaTeX">3\times </tex-math></inline-formula> FWHMy, indicate that velocities are estimated according to the theoretical model. The theoretical model can, therefore, be used for the compensation of velocity estimates under these circumstances.]]></description><identifier>ISSN: 0885-3010</identifier><identifier>ISSN: 1525-8955</identifier><identifier>EISSN: 1525-8955</identifier><identifier>DOI: 10.1109/TUFFC.2024.3416512</identifier><identifier>PMID: 38896528</identifier><identifier>CODEN: ITUCER</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Acoustics ; Blood flow ; Blood flow velocity ; Blood vessels ; Capillaries ; Diameters ; Electron tubes ; Flow velocity ; flow velocity underestimation ; Image resolution ; Imaging ; Linear arrays ; microvascular flow imaging ; Phantoms ; Simulation ; Solid modeling ; super-resolution ultrasound imaging (SRUS) ; Superresolution ; Three dimensional flow ; Transducers ; Two dimensional flow ; Ultrasonic imaging ; ultrasound localization microscopy (ULM) ; Velocity distribution ; velocity estimation</subject><ispartof>IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2024-12, Vol.71 (12: Breaking the Resolution Barrier in Ultrasound), p.1844-1854</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c303t-e174b5fecf33d3aa6120d9e96d6fe1cd7bbbcd13077a9ea710adf88b7c2e6ff23</cites><orcidid>0000-0002-2551-074X ; 0000-0001-6506-3991 ; 0000-0001-8515-5607 ; 0000-0002-7896-3136 ; 0000-0002-2772-926X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10562351$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10562351$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38896528$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Amin Naji, Mostafa</creatorcontrib><creatorcontrib>Taghavi, Iman</creatorcontrib><creatorcontrib>Vilain Thomsen, Erik</creatorcontrib><creatorcontrib>Bent Larsen, Niels</creatorcontrib><creatorcontrib>Arendt Jensen, Jorgen</creatorcontrib><title>Underestimation of Flow Velocity in 2-D Super-Resolution Ultrasound Imaging</title><title>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</title><addtitle>T-UFFC</addtitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><description><![CDATA[Velocity estimation in ultrasound imaging is a technique to measure the speed and direction of blood flow. The flow velocity in small blood vessels, i.e., arterioles, venules, and capillaries, can be estimated using super-resolution ultrasound imaging (SRUS). However, the vessel width in SRUS is relatively small compared with the full-width-half-maximum of the ultrasound beam in the elevation direction, which directly impacts the velocity estimation. By taking into consideration the small vessel widths in SRUS, it is hypothesized that the velocity is underestimated in 2-D SRUS when the vessel diameter is smaller than the full width at half maximum elevation resolution of the transducer (FWHMy). A theoretical model is introduced to show that the velocity of a 3-D parabolic velocity profile is underestimated by up to 33% in 2-D SRUS, if the width of the vessel is smaller than FWHMy. This model was tested using Field II simulations and 3-D-printed micro-flow hydrogel phantom measurements. A Verasonics Vantage 256 scanner and a GE L8-18i-D linear array transducer with FWHMy of approximately <inline-formula> <tex-math notation="LaTeX">770~\mu {m} </tex-math></inline-formula> at the elevation focus were used in the simulations and measurements. Simulations of different parabolic velocity profiles showed that the velocity underestimation was 36.8% <inline-formula> <tex-math notation="LaTeX">\pm ~1.5 </tex-math></inline-formula>% (mean ± standard deviation). The measurements showed that the velocity was underestimated by 30% <inline-formula> <tex-math notation="LaTeX">\pm ~6.9 </tex-math></inline-formula>%. Moreover, the results of vessel diameters, ranging from <inline-formula> <tex-math notation="LaTeX">0.125\times </tex-math></inline-formula> FWHMy to <inline-formula> <tex-math notation="LaTeX">3\times </tex-math></inline-formula> FWHMy, indicate that velocities are estimated according to the theoretical model. The theoretical model can, therefore, be used for the compensation of velocity estimates under these circumstances.]]></description><subject>Acoustics</subject><subject>Blood flow</subject><subject>Blood flow velocity</subject><subject>Blood vessels</subject><subject>Capillaries</subject><subject>Diameters</subject><subject>Electron tubes</subject><subject>Flow velocity</subject><subject>flow velocity underestimation</subject><subject>Image resolution</subject><subject>Imaging</subject><subject>Linear arrays</subject><subject>microvascular flow imaging</subject><subject>Phantoms</subject><subject>Simulation</subject><subject>Solid modeling</subject><subject>super-resolution ultrasound imaging (SRUS)</subject><subject>Superresolution</subject><subject>Three dimensional flow</subject><subject>Transducers</subject><subject>Two dimensional flow</subject><subject>Ultrasonic imaging</subject><subject>ultrasound localization microscopy (ULM)</subject><subject>Velocity distribution</subject><subject>velocity estimation</subject><issn>0885-3010</issn><issn>1525-8955</issn><issn>1525-8955</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkF1LwzAYhYMobk7_gIgUvPGmMx9Nm17KdDocCLp5G9Lmzejompm0yP692YciXp2b5xwOD0KXBA8JwfndbD4ej4YU02TIEpJyQo9Qn3DKY5Fzfoz6WAgeM0xwD515v8SYJElOT1GPCZGnnIo-epk3Ghz4tlqptrJNZE00ru1X9AG1Lat2E1VNROOH6L1bg4vfwNu624HzunXK267R0WSlFlWzOEcnRtUeLg45QPPx42z0HE9fnyaj-2lcMszaGEiWFNxAaRjTTKmUUKxzyFOdGiClzoqiKDVhOMtUDiojWGkjRJGVFFJjKBug2_3u2tnPLnyXq8qXUNeqAdt5GZpY0OAlDejNP3RpO9eEd5IFUxnnlOBA0T1VOuu9AyPXLvhwG0mw3KqWO9Vyq1oeVIfS9WG6K1agfys_bgNwtQcqAPizyFPKOGHfG5OCwQ</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Amin Naji, Mostafa</creator><creator>Taghavi, Iman</creator><creator>Vilain Thomsen, Erik</creator><creator>Bent Larsen, Niels</creator><creator>Arendt Jensen, Jorgen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2551-074X</orcidid><orcidid>https://orcid.org/0000-0001-6506-3991</orcidid><orcidid>https://orcid.org/0000-0001-8515-5607</orcidid><orcidid>https://orcid.org/0000-0002-7896-3136</orcidid><orcidid>https://orcid.org/0000-0002-2772-926X</orcidid></search><sort><creationdate>20241201</creationdate><title>Underestimation of Flow Velocity in 2-D Super-Resolution Ultrasound Imaging</title><author>Amin Naji, Mostafa ; Taghavi, Iman ; Vilain Thomsen, Erik ; Bent Larsen, Niels ; Arendt Jensen, Jorgen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-e174b5fecf33d3aa6120d9e96d6fe1cd7bbbcd13077a9ea710adf88b7c2e6ff23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acoustics</topic><topic>Blood flow</topic><topic>Blood flow velocity</topic><topic>Blood vessels</topic><topic>Capillaries</topic><topic>Diameters</topic><topic>Electron tubes</topic><topic>Flow velocity</topic><topic>flow velocity underestimation</topic><topic>Image resolution</topic><topic>Imaging</topic><topic>Linear arrays</topic><topic>microvascular flow imaging</topic><topic>Phantoms</topic><topic>Simulation</topic><topic>Solid modeling</topic><topic>super-resolution ultrasound imaging (SRUS)</topic><topic>Superresolution</topic><topic>Three dimensional flow</topic><topic>Transducers</topic><topic>Two dimensional flow</topic><topic>Ultrasonic imaging</topic><topic>ultrasound localization microscopy (ULM)</topic><topic>Velocity distribution</topic><topic>velocity estimation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amin Naji, Mostafa</creatorcontrib><creatorcontrib>Taghavi, Iman</creatorcontrib><creatorcontrib>Vilain Thomsen, Erik</creatorcontrib><creatorcontrib>Bent Larsen, Niels</creatorcontrib><creatorcontrib>Arendt Jensen, Jorgen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Amin Naji, Mostafa</au><au>Taghavi, Iman</au><au>Vilain Thomsen, Erik</au><au>Bent Larsen, Niels</au><au>Arendt Jensen, Jorgen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Underestimation of Flow Velocity in 2-D Super-Resolution Ultrasound Imaging</atitle><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle><stitle>T-UFFC</stitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><date>2024-12-01</date><risdate>2024</risdate><volume>71</volume><issue>12: Breaking the Resolution Barrier in Ultrasound</issue><spage>1844</spage><epage>1854</epage><pages>1844-1854</pages><issn>0885-3010</issn><issn>1525-8955</issn><eissn>1525-8955</eissn><coden>ITUCER</coden><abstract><![CDATA[Velocity estimation in ultrasound imaging is a technique to measure the speed and direction of blood flow. The flow velocity in small blood vessels, i.e., arterioles, venules, and capillaries, can be estimated using super-resolution ultrasound imaging (SRUS). However, the vessel width in SRUS is relatively small compared with the full-width-half-maximum of the ultrasound beam in the elevation direction, which directly impacts the velocity estimation. By taking into consideration the small vessel widths in SRUS, it is hypothesized that the velocity is underestimated in 2-D SRUS when the vessel diameter is smaller than the full width at half maximum elevation resolution of the transducer (FWHMy). A theoretical model is introduced to show that the velocity of a 3-D parabolic velocity profile is underestimated by up to 33% in 2-D SRUS, if the width of the vessel is smaller than FWHMy. This model was tested using Field II simulations and 3-D-printed micro-flow hydrogel phantom measurements. A Verasonics Vantage 256 scanner and a GE L8-18i-D linear array transducer with FWHMy of approximately <inline-formula> <tex-math notation="LaTeX">770~\mu {m} </tex-math></inline-formula> at the elevation focus were used in the simulations and measurements. Simulations of different parabolic velocity profiles showed that the velocity underestimation was 36.8% <inline-formula> <tex-math notation="LaTeX">\pm ~1.5 </tex-math></inline-formula>% (mean ± standard deviation). The measurements showed that the velocity was underestimated by 30% <inline-formula> <tex-math notation="LaTeX">\pm ~6.9 </tex-math></inline-formula>%. Moreover, the results of vessel diameters, ranging from <inline-formula> <tex-math notation="LaTeX">0.125\times </tex-math></inline-formula> FWHMy to <inline-formula> <tex-math notation="LaTeX">3\times </tex-math></inline-formula> FWHMy, indicate that velocities are estimated according to the theoretical model. The theoretical model can, therefore, be used for the compensation of velocity estimates under these circumstances.]]></abstract><cop>United States</cop><pub>IEEE</pub><pmid>38896528</pmid><doi>10.1109/TUFFC.2024.3416512</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2551-074X</orcidid><orcidid>https://orcid.org/0000-0001-6506-3991</orcidid><orcidid>https://orcid.org/0000-0001-8515-5607</orcidid><orcidid>https://orcid.org/0000-0002-7896-3136</orcidid><orcidid>https://orcid.org/0000-0002-2772-926X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-3010
ispartof IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2024-12, Vol.71 (12: Breaking the Resolution Barrier in Ultrasound), p.1844-1854
issn 0885-3010
1525-8955
1525-8955
language eng
recordid cdi_proquest_miscellaneous_3070822026
source IEEE Electronic Library (IEL)
subjects Acoustics
Blood flow
Blood flow velocity
Blood vessels
Capillaries
Diameters
Electron tubes
Flow velocity
flow velocity underestimation
Image resolution
Imaging
Linear arrays
microvascular flow imaging
Phantoms
Simulation
Solid modeling
super-resolution ultrasound imaging (SRUS)
Superresolution
Three dimensional flow
Transducers
Two dimensional flow
Ultrasonic imaging
ultrasound localization microscopy (ULM)
Velocity distribution
velocity estimation
title Underestimation of Flow Velocity in 2-D Super-Resolution Ultrasound Imaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T19%3A25%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Underestimation%20of%20Flow%20Velocity%20in%202-D%20Super-Resolution%20Ultrasound%20Imaging&rft.jtitle=IEEE%20transactions%20on%20ultrasonics,%20ferroelectrics,%20and%20frequency%20control&rft.au=Amin%20Naji,%20Mostafa&rft.date=2024-12-01&rft.volume=71&rft.issue=12:%20Breaking%20the%20Resolution%20Barrier%20in%20Ultrasound&rft.spage=1844&rft.epage=1854&rft.pages=1844-1854&rft.issn=0885-3010&rft.eissn=1525-8955&rft.coden=ITUCER&rft_id=info:doi/10.1109/TUFFC.2024.3416512&rft_dat=%3Cproquest_RIE%3E3070822026%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3152755210&rft_id=info:pmid/38896528&rft_ieee_id=10562351&rfr_iscdi=true