Underestimation of Flow Velocity in 2-D Super-Resolution Ultrasound Imaging
Velocity estimation in ultrasound imaging is a technique to measure the speed and direction of blood flow. The flow velocity in small blood vessels, i.e., arterioles, venules, and capillaries, can be estimated using super-resolution ultrasound imaging (SRUS). However, the vessel width in SRUS is rel...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2024-12, Vol.71 (12: Breaking the Resolution Barrier in Ultrasound), p.1844-1854 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1854 |
---|---|
container_issue | 12: Breaking the Resolution Barrier in Ultrasound |
container_start_page | 1844 |
container_title | IEEE transactions on ultrasonics, ferroelectrics, and frequency control |
container_volume | 71 |
creator | Amin Naji, Mostafa Taghavi, Iman Vilain Thomsen, Erik Bent Larsen, Niels Arendt Jensen, Jorgen |
description | Velocity estimation in ultrasound imaging is a technique to measure the speed and direction of blood flow. The flow velocity in small blood vessels, i.e., arterioles, venules, and capillaries, can be estimated using super-resolution ultrasound imaging (SRUS). However, the vessel width in SRUS is relatively small compared with the full-width-half-maximum of the ultrasound beam in the elevation direction, which directly impacts the velocity estimation. By taking into consideration the small vessel widths in SRUS, it is hypothesized that the velocity is underestimated in 2-D SRUS when the vessel diameter is smaller than the full width at half maximum elevation resolution of the transducer (FWHMy). A theoretical model is introduced to show that the velocity of a 3-D parabolic velocity profile is underestimated by up to 33% in 2-D SRUS, if the width of the vessel is smaller than FWHMy. This model was tested using Field II simulations and 3-D-printed micro-flow hydrogel phantom measurements. A Verasonics Vantage 256 scanner and a GE L8-18i-D linear array transducer with FWHMy of approximately 770~\mu {m} at the elevation focus were used in the simulations and measurements. Simulations of different parabolic velocity profiles showed that the velocity underestimation was 36.8% \pm ~1.5 % (mean ± standard deviation). The measurements showed that the velocity was underestimated by 30% \pm ~6.9 %. Moreover, the results of vessel diameters, ranging from 0.125\times FWHMy to 3\times FWHMy, indicate that velocities are estimated according to the theoretical model. The theoretical model can, therefore, be used for the compensation of velocity estimates under these circumstances. |
doi_str_mv | 10.1109/TUFFC.2024.3416512 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_3070822026</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10562351</ieee_id><sourcerecordid>3070822026</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-e174b5fecf33d3aa6120d9e96d6fe1cd7bbbcd13077a9ea710adf88b7c2e6ff23</originalsourceid><addsrcrecordid>eNpdkF1LwzAYhYMobk7_gIgUvPGmMx9Nm17KdDocCLp5G9Lmzejompm0yP692YciXp2b5xwOD0KXBA8JwfndbD4ej4YU02TIEpJyQo9Qn3DKY5Fzfoz6WAgeM0xwD515v8SYJElOT1GPCZGnnIo-epk3Ghz4tlqptrJNZE00ru1X9AG1Lat2E1VNROOH6L1bg4vfwNu624HzunXK267R0WSlFlWzOEcnRtUeLg45QPPx42z0HE9fnyaj-2lcMszaGEiWFNxAaRjTTKmUUKxzyFOdGiClzoqiKDVhOMtUDiojWGkjRJGVFFJjKBug2_3u2tnPLnyXq8qXUNeqAdt5GZpY0OAlDejNP3RpO9eEd5IFUxnnlOBA0T1VOuu9AyPXLvhwG0mw3KqWO9Vyq1oeVIfS9WG6K1agfys_bgNwtQcqAPizyFPKOGHfG5OCwQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3152755210</pqid></control><display><type>article</type><title>Underestimation of Flow Velocity in 2-D Super-Resolution Ultrasound Imaging</title><source>IEEE Electronic Library (IEL)</source><creator>Amin Naji, Mostafa ; Taghavi, Iman ; Vilain Thomsen, Erik ; Bent Larsen, Niels ; Arendt Jensen, Jorgen</creator><creatorcontrib>Amin Naji, Mostafa ; Taghavi, Iman ; Vilain Thomsen, Erik ; Bent Larsen, Niels ; Arendt Jensen, Jorgen</creatorcontrib><description><![CDATA[Velocity estimation in ultrasound imaging is a technique to measure the speed and direction of blood flow. The flow velocity in small blood vessels, i.e., arterioles, venules, and capillaries, can be estimated using super-resolution ultrasound imaging (SRUS). However, the vessel width in SRUS is relatively small compared with the full-width-half-maximum of the ultrasound beam in the elevation direction, which directly impacts the velocity estimation. By taking into consideration the small vessel widths in SRUS, it is hypothesized that the velocity is underestimated in 2-D SRUS when the vessel diameter is smaller than the full width at half maximum elevation resolution of the transducer (FWHMy). A theoretical model is introduced to show that the velocity of a 3-D parabolic velocity profile is underestimated by up to 33% in 2-D SRUS, if the width of the vessel is smaller than FWHMy. This model was tested using Field II simulations and 3-D-printed micro-flow hydrogel phantom measurements. A Verasonics Vantage 256 scanner and a GE L8-18i-D linear array transducer with FWHMy of approximately <inline-formula> <tex-math notation="LaTeX">770~\mu {m} </tex-math></inline-formula> at the elevation focus were used in the simulations and measurements. Simulations of different parabolic velocity profiles showed that the velocity underestimation was 36.8% <inline-formula> <tex-math notation="LaTeX">\pm ~1.5 </tex-math></inline-formula>% (mean ± standard deviation). The measurements showed that the velocity was underestimated by 30% <inline-formula> <tex-math notation="LaTeX">\pm ~6.9 </tex-math></inline-formula>%. Moreover, the results of vessel diameters, ranging from <inline-formula> <tex-math notation="LaTeX">0.125\times </tex-math></inline-formula> FWHMy to <inline-formula> <tex-math notation="LaTeX">3\times </tex-math></inline-formula> FWHMy, indicate that velocities are estimated according to the theoretical model. The theoretical model can, therefore, be used for the compensation of velocity estimates under these circumstances.]]></description><identifier>ISSN: 0885-3010</identifier><identifier>ISSN: 1525-8955</identifier><identifier>EISSN: 1525-8955</identifier><identifier>DOI: 10.1109/TUFFC.2024.3416512</identifier><identifier>PMID: 38896528</identifier><identifier>CODEN: ITUCER</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Acoustics ; Blood flow ; Blood flow velocity ; Blood vessels ; Capillaries ; Diameters ; Electron tubes ; Flow velocity ; flow velocity underestimation ; Image resolution ; Imaging ; Linear arrays ; microvascular flow imaging ; Phantoms ; Simulation ; Solid modeling ; super-resolution ultrasound imaging (SRUS) ; Superresolution ; Three dimensional flow ; Transducers ; Two dimensional flow ; Ultrasonic imaging ; ultrasound localization microscopy (ULM) ; Velocity distribution ; velocity estimation</subject><ispartof>IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2024-12, Vol.71 (12: Breaking the Resolution Barrier in Ultrasound), p.1844-1854</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c303t-e174b5fecf33d3aa6120d9e96d6fe1cd7bbbcd13077a9ea710adf88b7c2e6ff23</cites><orcidid>0000-0002-2551-074X ; 0000-0001-6506-3991 ; 0000-0001-8515-5607 ; 0000-0002-7896-3136 ; 0000-0002-2772-926X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10562351$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10562351$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38896528$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Amin Naji, Mostafa</creatorcontrib><creatorcontrib>Taghavi, Iman</creatorcontrib><creatorcontrib>Vilain Thomsen, Erik</creatorcontrib><creatorcontrib>Bent Larsen, Niels</creatorcontrib><creatorcontrib>Arendt Jensen, Jorgen</creatorcontrib><title>Underestimation of Flow Velocity in 2-D Super-Resolution Ultrasound Imaging</title><title>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</title><addtitle>T-UFFC</addtitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><description><![CDATA[Velocity estimation in ultrasound imaging is a technique to measure the speed and direction of blood flow. The flow velocity in small blood vessels, i.e., arterioles, venules, and capillaries, can be estimated using super-resolution ultrasound imaging (SRUS). However, the vessel width in SRUS is relatively small compared with the full-width-half-maximum of the ultrasound beam in the elevation direction, which directly impacts the velocity estimation. By taking into consideration the small vessel widths in SRUS, it is hypothesized that the velocity is underestimated in 2-D SRUS when the vessel diameter is smaller than the full width at half maximum elevation resolution of the transducer (FWHMy). A theoretical model is introduced to show that the velocity of a 3-D parabolic velocity profile is underestimated by up to 33% in 2-D SRUS, if the width of the vessel is smaller than FWHMy. This model was tested using Field II simulations and 3-D-printed micro-flow hydrogel phantom measurements. A Verasonics Vantage 256 scanner and a GE L8-18i-D linear array transducer with FWHMy of approximately <inline-formula> <tex-math notation="LaTeX">770~\mu {m} </tex-math></inline-formula> at the elevation focus were used in the simulations and measurements. Simulations of different parabolic velocity profiles showed that the velocity underestimation was 36.8% <inline-formula> <tex-math notation="LaTeX">\pm ~1.5 </tex-math></inline-formula>% (mean ± standard deviation). The measurements showed that the velocity was underestimated by 30% <inline-formula> <tex-math notation="LaTeX">\pm ~6.9 </tex-math></inline-formula>%. Moreover, the results of vessel diameters, ranging from <inline-formula> <tex-math notation="LaTeX">0.125\times </tex-math></inline-formula> FWHMy to <inline-formula> <tex-math notation="LaTeX">3\times </tex-math></inline-formula> FWHMy, indicate that velocities are estimated according to the theoretical model. The theoretical model can, therefore, be used for the compensation of velocity estimates under these circumstances.]]></description><subject>Acoustics</subject><subject>Blood flow</subject><subject>Blood flow velocity</subject><subject>Blood vessels</subject><subject>Capillaries</subject><subject>Diameters</subject><subject>Electron tubes</subject><subject>Flow velocity</subject><subject>flow velocity underestimation</subject><subject>Image resolution</subject><subject>Imaging</subject><subject>Linear arrays</subject><subject>microvascular flow imaging</subject><subject>Phantoms</subject><subject>Simulation</subject><subject>Solid modeling</subject><subject>super-resolution ultrasound imaging (SRUS)</subject><subject>Superresolution</subject><subject>Three dimensional flow</subject><subject>Transducers</subject><subject>Two dimensional flow</subject><subject>Ultrasonic imaging</subject><subject>ultrasound localization microscopy (ULM)</subject><subject>Velocity distribution</subject><subject>velocity estimation</subject><issn>0885-3010</issn><issn>1525-8955</issn><issn>1525-8955</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkF1LwzAYhYMobk7_gIgUvPGmMx9Nm17KdDocCLp5G9Lmzejompm0yP692YciXp2b5xwOD0KXBA8JwfndbD4ej4YU02TIEpJyQo9Qn3DKY5Fzfoz6WAgeM0xwD515v8SYJElOT1GPCZGnnIo-epk3Ghz4tlqptrJNZE00ru1X9AG1Lat2E1VNROOH6L1bg4vfwNu624HzunXK267R0WSlFlWzOEcnRtUeLg45QPPx42z0HE9fnyaj-2lcMszaGEiWFNxAaRjTTKmUUKxzyFOdGiClzoqiKDVhOMtUDiojWGkjRJGVFFJjKBug2_3u2tnPLnyXq8qXUNeqAdt5GZpY0OAlDejNP3RpO9eEd5IFUxnnlOBA0T1VOuu9AyPXLvhwG0mw3KqWO9Vyq1oeVIfS9WG6K1agfys_bgNwtQcqAPizyFPKOGHfG5OCwQ</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Amin Naji, Mostafa</creator><creator>Taghavi, Iman</creator><creator>Vilain Thomsen, Erik</creator><creator>Bent Larsen, Niels</creator><creator>Arendt Jensen, Jorgen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2551-074X</orcidid><orcidid>https://orcid.org/0000-0001-6506-3991</orcidid><orcidid>https://orcid.org/0000-0001-8515-5607</orcidid><orcidid>https://orcid.org/0000-0002-7896-3136</orcidid><orcidid>https://orcid.org/0000-0002-2772-926X</orcidid></search><sort><creationdate>20241201</creationdate><title>Underestimation of Flow Velocity in 2-D Super-Resolution Ultrasound Imaging</title><author>Amin Naji, Mostafa ; Taghavi, Iman ; Vilain Thomsen, Erik ; Bent Larsen, Niels ; Arendt Jensen, Jorgen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-e174b5fecf33d3aa6120d9e96d6fe1cd7bbbcd13077a9ea710adf88b7c2e6ff23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acoustics</topic><topic>Blood flow</topic><topic>Blood flow velocity</topic><topic>Blood vessels</topic><topic>Capillaries</topic><topic>Diameters</topic><topic>Electron tubes</topic><topic>Flow velocity</topic><topic>flow velocity underestimation</topic><topic>Image resolution</topic><topic>Imaging</topic><topic>Linear arrays</topic><topic>microvascular flow imaging</topic><topic>Phantoms</topic><topic>Simulation</topic><topic>Solid modeling</topic><topic>super-resolution ultrasound imaging (SRUS)</topic><topic>Superresolution</topic><topic>Three dimensional flow</topic><topic>Transducers</topic><topic>Two dimensional flow</topic><topic>Ultrasonic imaging</topic><topic>ultrasound localization microscopy (ULM)</topic><topic>Velocity distribution</topic><topic>velocity estimation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amin Naji, Mostafa</creatorcontrib><creatorcontrib>Taghavi, Iman</creatorcontrib><creatorcontrib>Vilain Thomsen, Erik</creatorcontrib><creatorcontrib>Bent Larsen, Niels</creatorcontrib><creatorcontrib>Arendt Jensen, Jorgen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Amin Naji, Mostafa</au><au>Taghavi, Iman</au><au>Vilain Thomsen, Erik</au><au>Bent Larsen, Niels</au><au>Arendt Jensen, Jorgen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Underestimation of Flow Velocity in 2-D Super-Resolution Ultrasound Imaging</atitle><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle><stitle>T-UFFC</stitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><date>2024-12-01</date><risdate>2024</risdate><volume>71</volume><issue>12: Breaking the Resolution Barrier in Ultrasound</issue><spage>1844</spage><epage>1854</epage><pages>1844-1854</pages><issn>0885-3010</issn><issn>1525-8955</issn><eissn>1525-8955</eissn><coden>ITUCER</coden><abstract><![CDATA[Velocity estimation in ultrasound imaging is a technique to measure the speed and direction of blood flow. The flow velocity in small blood vessels, i.e., arterioles, venules, and capillaries, can be estimated using super-resolution ultrasound imaging (SRUS). However, the vessel width in SRUS is relatively small compared with the full-width-half-maximum of the ultrasound beam in the elevation direction, which directly impacts the velocity estimation. By taking into consideration the small vessel widths in SRUS, it is hypothesized that the velocity is underestimated in 2-D SRUS when the vessel diameter is smaller than the full width at half maximum elevation resolution of the transducer (FWHMy). A theoretical model is introduced to show that the velocity of a 3-D parabolic velocity profile is underestimated by up to 33% in 2-D SRUS, if the width of the vessel is smaller than FWHMy. This model was tested using Field II simulations and 3-D-printed micro-flow hydrogel phantom measurements. A Verasonics Vantage 256 scanner and a GE L8-18i-D linear array transducer with FWHMy of approximately <inline-formula> <tex-math notation="LaTeX">770~\mu {m} </tex-math></inline-formula> at the elevation focus were used in the simulations and measurements. Simulations of different parabolic velocity profiles showed that the velocity underestimation was 36.8% <inline-formula> <tex-math notation="LaTeX">\pm ~1.5 </tex-math></inline-formula>% (mean ± standard deviation). The measurements showed that the velocity was underestimated by 30% <inline-formula> <tex-math notation="LaTeX">\pm ~6.9 </tex-math></inline-formula>%. Moreover, the results of vessel diameters, ranging from <inline-formula> <tex-math notation="LaTeX">0.125\times </tex-math></inline-formula> FWHMy to <inline-formula> <tex-math notation="LaTeX">3\times </tex-math></inline-formula> FWHMy, indicate that velocities are estimated according to the theoretical model. The theoretical model can, therefore, be used for the compensation of velocity estimates under these circumstances.]]></abstract><cop>United States</cop><pub>IEEE</pub><pmid>38896528</pmid><doi>10.1109/TUFFC.2024.3416512</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2551-074X</orcidid><orcidid>https://orcid.org/0000-0001-6506-3991</orcidid><orcidid>https://orcid.org/0000-0001-8515-5607</orcidid><orcidid>https://orcid.org/0000-0002-7896-3136</orcidid><orcidid>https://orcid.org/0000-0002-2772-926X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-3010 |
ispartof | IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2024-12, Vol.71 (12: Breaking the Resolution Barrier in Ultrasound), p.1844-1854 |
issn | 0885-3010 1525-8955 1525-8955 |
language | eng |
recordid | cdi_proquest_miscellaneous_3070822026 |
source | IEEE Electronic Library (IEL) |
subjects | Acoustics Blood flow Blood flow velocity Blood vessels Capillaries Diameters Electron tubes Flow velocity flow velocity underestimation Image resolution Imaging Linear arrays microvascular flow imaging Phantoms Simulation Solid modeling super-resolution ultrasound imaging (SRUS) Superresolution Three dimensional flow Transducers Two dimensional flow Ultrasonic imaging ultrasound localization microscopy (ULM) Velocity distribution velocity estimation |
title | Underestimation of Flow Velocity in 2-D Super-Resolution Ultrasound Imaging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T19%3A25%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Underestimation%20of%20Flow%20Velocity%20in%202-D%20Super-Resolution%20Ultrasound%20Imaging&rft.jtitle=IEEE%20transactions%20on%20ultrasonics,%20ferroelectrics,%20and%20frequency%20control&rft.au=Amin%20Naji,%20Mostafa&rft.date=2024-12-01&rft.volume=71&rft.issue=12:%20Breaking%20the%20Resolution%20Barrier%20in%20Ultrasound&rft.spage=1844&rft.epage=1854&rft.pages=1844-1854&rft.issn=0885-3010&rft.eissn=1525-8955&rft.coden=ITUCER&rft_id=info:doi/10.1109/TUFFC.2024.3416512&rft_dat=%3Cproquest_RIE%3E3070822026%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3152755210&rft_id=info:pmid/38896528&rft_ieee_id=10562351&rfr_iscdi=true |