Underestimation of Flow Velocity in 2-D Super-Resolution Ultrasound Imaging
Velocity estimation in ultrasound imaging is a technique to measure the speed and direction of blood flow. The flow velocity in small blood vessels, i.e., arterioles, venules, and capillaries, can be estimated using super-resolution ultrasound imaging (SRUS). However, the vessel width in SRUS is rel...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2024-06, Vol.PP, p.1-1 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Velocity estimation in ultrasound imaging is a technique to measure the speed and direction of blood flow. The flow velocity in small blood vessels, i.e., arterioles, venules, and capillaries, can be estimated using super-resolution ultrasound imaging (SRUS). However, the vessel width in SRUS is relatively small compared with the full-width-half-maximum of the ultrasound beam in the elevation direction (FWHM y ), which directly impacts the velocity estimation. By taking into consideration the small vessel widths in SRUS, it is hypothesized that the velocity is underestimated in 2-D super-resolution ultrasound imaging when the vessel diameter is smaller than the FWHM y . A theoretical model is introduced to show that the velocity of a 3-D parabolic velocity profile is underestimated by up to 33% in 2-D SRUS, if the width of the vessel is smaller than the FWHM y . This model was tested using Field II simulations and 3-D printed micro-flow hydrogel phantom measurements. A Verasonics Vantage 256™ scanner and a GE L8-18i-D linear array transducer with FWHM y of approximately 770 μm at the elevation focus were used in the simulations and measurements. Simulations of different parabolic velocity profiles showed that the velocity underestimation was 36.8%±1.5% (mean±standard deviation). The measurements showed that the velocity was underestimated by 30%±6.9%. Moreover, the results of vessel diameters, ranging from 0.125×FWHM y to 3×FWHM y , indicate that velocities are estimated according to the theoretical model. The theoretical model can, therefore, be used for the compensation of velocity estimates under these circumstances. |
---|---|
ISSN: | 0885-3010 1525-8955 1525-8955 |
DOI: | 10.1109/TUFFC.2024.3416512 |