Discrimination and simultaneous quantification of poly(ethylene terephthalate) and poly(butylene terephthalate) microplastics in environmental samples via gas chromatography-tandem mass spectrometry

A method has been developed to quantify PET and PBT microplastics (MPs) based on depolymerization and detection of depolymerization products by gas chromatography-tandem mass spectrometry (GC–MS/MS) without a complex separation process from environmental samples. Under the optimal depolymerization c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mikrochimica acta (1966) 2024-07, Vol.191 (7), p.388, Article 388
Hauptverfasser: Lu, Liqiang, Tong, Jiahui, Wang, Han, Che, Huachao, Li, Yong, Tian, Xike
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A method has been developed to quantify PET and PBT microplastics (MPs) based on depolymerization and detection of depolymerization products by gas chromatography-tandem mass spectrometry (GC–MS/MS) without a complex separation process from environmental samples. Under the optimal depolymerization conditions, PET and PBT were efficiently converted to ethylene glycol (78%) and 1,4-butanediol (87%), respectively. Subsequently, the linear curves were constructed between signal intensities of depolymerization products and polymer masses by GC–MS/MS, and the correlation coefficients of PET and PBT were 0.996 and 0.997, respectively. The spiking and recovery experiments of PET and PBT in the environmental samples showed that the recovery was stable in the range 89–100%, and the limit of detection was 4.95 μg and 1.39 μg of PET and PBT, respectively. The method has been proven to be capable of simultaneous identification and quantification of PBT and PET MPs in real environmental water samples without complex separation process, which provided a scheme for the determination of microplastics. Graphical abstract
ISSN:0026-3672
1436-5073
1436-5073
DOI:10.1007/s00604-024-06464-4