Resistant starch from yam: Preparation, nutrition, properties and applications in the food sector
Yam is a significant staple food and starch source, particularly in tropical and subtropical regions, holding the fourth position among the world's top ten tuber crops. Yam tubers are rich in essential nutrients and a diverse range of beneficial plant compounds, which contribute to their multif...
Gespeichert in:
Veröffentlicht in: | International journal of biological macromolecules 2024-07, Vol.273 (Pt 1), p.133087, Article 133087 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Yam is a significant staple food and starch source, particularly in tropical and subtropical regions, holding the fourth position among the world's top ten tuber crops. Yam tubers are rich in essential nutrients and a diverse range of beneficial plant compounds, which contribute to their multifaceted beneficial functions. Furthermore, the abundant starch and resistant starch (RS) content in yam can fulfil the market demand for RS. The inherent and modified properties of yam starch and RS make them versatile ingredients for a wide range of food products, with the potential to become one of the most cost-effective raw materials in the food industry. In recent years, research on yam RS has experienced progressive expansion. This article provides a comprehensive summary of the latest research findings on yam starch and its RS, elucidating the feasibility of commercial RS production and the technology's impact on the physical and chemical properties of starch. Yam has emerged as a promising reservoir of tuber starch for sustainable RS production, with thermal, chemical, enzymatic and combination treatments proving to be effective manufacturing procedures for RS. The adaptability of yam RS allows for a wide range of food applications. |
---|---|
ISSN: | 0141-8130 1879-0003 1879-0003 |
DOI: | 10.1016/j.ijbiomac.2024.133087 |