The role of HMGB1 on SiC NPs-induced inflammation response in lung epithelial-macrophage co-culture system

In recent years, carbonized silicon nanoparticles (SiC NPs) have found widespread scientific and engineering applications, raising concerns about potential human health risks. SiC NPs may induce pulmonary damage through sustained inflammatory responses and oxidative stress, with unclear toxicity mec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Food and chemical toxicology 2024-08, Vol.190, p.114762, Article 114762
Hauptverfasser: Chen, Xiao, Zhang, Linyuan, Yu, Changyan, Duan, Airu, Jiao, Bo, Chen, Yuanyuan, Dai, Yufei, li, Bin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In recent years, carbonized silicon nanoparticles (SiC NPs) have found widespread scientific and engineering applications, raising concerns about potential human health risks. SiC NPs may induce pulmonary damage through sustained inflammatory responses and oxidative stress, with unclear toxicity mechanisms. This study uses an in vitro co-culture model of alveolar macrophages (NR8383) and alveolar epithelial cells (RLE-6TN) to simulate the interaction between airway epithelial cells and immune cells, providing initial insights into SiC NP-triggered inflammatory responses. The research reveals that increasing SiC NP exposure prompts NR8383 cells to release high mobility group box 1 protein (HMGB1), which migrates into RLE-6TN cells and activates the receptor for advanced glycation end-products (RAGE) and Toll-like receptor 4 (TLR4). RAGE and TLR4 synergistically activate the MyD88/NF-κB inflammatory pathway, ultimately inducing inflammatory responses and oxidative stress in RLE-6TN cells, characterized by excessive ROS generation and altered cytokine levels. Pretreatment with RAGE and TLR4 inhibitors attenuates SiC-induced HMGB1 expression and downstream pathway proteins, reducing inflammatory responses and oxidative damage. This highlights the pivotal role of RAGE-TLR4 crosstalk in SiC NP-induced pulmonary inflammation, providing insights into SiC NP cytotoxicity and nanomaterial safety guidelines.
ISSN:0278-6915
1873-6351
1873-6351
DOI:10.1016/j.fct.2024.114762