γ-Mangosteen, an autophagy enhancer, prevents skin-aging via activating KEAP1/NRF2 signaling and downregulating MAPKs/AP-1/NF-κB-mediated MMPs

•γ-Mangosteen halts ROS generation by activating NRF2/HO-1 signaling in HDF cells.•γ-Mangosteen suppresses MMP-1 production via regulation of MAPK/AP-1/NF-B signaling.•γ-Mangosteen contributes to delaying the onset of skin photoaging through the potential activation of autophagy mechanisms. Mangoste...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Phytomedicine (Stuttgart) 2024-09, Vol.132, p.155815, Article 155815
Hauptverfasser: Kim, Chang-Woo, Alam, Md Badrul, Song, Bo-Rim, Lee, Chang Hyung, Kim, Solomon L., Lee, Sang-Han
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•γ-Mangosteen halts ROS generation by activating NRF2/HO-1 signaling in HDF cells.•γ-Mangosteen suppresses MMP-1 production via regulation of MAPK/AP-1/NF-B signaling.•γ-Mangosteen contributes to delaying the onset of skin photoaging through the potential activation of autophagy mechanisms. Mangosteens, a naturally occurring xanthones, found abundantly in mangosteen fruits. The anti-skin aging potential of γ-mangosteen (GM) remains unexplored; therefore, we investigated the UVB-induced anti-skin aging of GM via activation of autophagy. We hypothesized that GM exerts antioxidant and anti-aging capabilities both in vitro and in vivo through activation of autophagy as well as control of KEAP1/NRF2 signaling and MAPKs/AP-1/NF-κB-mediated MMPs pathways. The anti-skin aging effects of GM were studied using HDF cells and a mice model. Various assays, such as DPPH, ABTS, CUPRAC, FRAP, and ROS generation, assessed antioxidant activities. Kits measured antioxidant enzymes, SA-β-gal staining, collagen, MDA content, si-RNA experiments, and promoter assays. Western blotting evaluated protein levels of c-Jun, c-Fos, p-IκBα/β, p-NF-κB, MAPK, MMPs, collagenase, elastin, KEAP1, NRF2, HO-1, and autophagy-related proteins. GM exhibited strong antioxidant, collagenase and elastase enzyme inhibition activity surpassing α- and β-mangosteen. GM competitively inhibited elastase with a Ki value of 29.04 µM. GM orchestrated the KEAP1-NRF2 pathway, enhancing HO-1 expression, and suppressed UVB-induced ROS in HDF cells. NRF2 knockdown compromised GM's antioxidant efficacy, leading to uncontrolled ROS post-UVB. GM bolstered endogenous antioxidants, curbing lipid peroxidation in UVB-exposed HDF cells and BALB/c mice. GM effectively halted UVB-induced cell senescence, and reduced MMP-1/-9, while elevated TIMP-1 levels, augmented COL1A1, ELN, and HAS-2 expression in vitro and in vivo. Additionally, it suppressed UVB-induced MAPKs, AP-1, NF-κB phosphorylation. Pharmacological inhibitors synergistically enhanced GM's anti-skin aging potential. Moreover, GM inhibited UVB-induced mTOR activation, upregulated LC3-II, Atg5, Beclin 1, and reduced p62 in both UVB induced HDF cells and BALB/c mice, while blocking of autophagy successfully halt the GM effects against the UVB-induced increase of cell senescence, degradation of collagen through upregulation of MMP-1, underscoring GM's substantial anti-skin aging impact via autophagy induction in vitro and in vivo. Together, GM has potent antioxidant
ISSN:0944-7113
1618-095X
1618-095X
DOI:10.1016/j.phymed.2024.155815