Asymmetry in Polymer–Solvent Interactions Yields Complex Thermoresponsive Behavior

We introduce a lattice framework that incorporates elements of Flory–Huggins solution theory and the q-state Potts model to study the phase behavior of polymer solutions and single-chain conformational characteristics. Without empirically introducing temperature-dependent interaction parameters, sta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS macro letters 2024-07, Vol.13 (7), p.818-825
Hauptverfasser: Dhamankar, Satyen, Webb, Michael A.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce a lattice framework that incorporates elements of Flory–Huggins solution theory and the q-state Potts model to study the phase behavior of polymer solutions and single-chain conformational characteristics. Without empirically introducing temperature-dependent interaction parameters, standard Flory–Huggins theory describes systems that are either homogeneous across temperatures or exhibit upper critical solution temperatures. The proposed Flory–Huggins–Potts framework extends these capabilities by predicting lower critical solution temperatures, miscibility loops, and hourglass-shaped spinodal curves. We particularly show that including orientation-dependent interactions, specifically between monomer segments and solvent particles, is alone sufficient to observe such phase behavior. Signatures of emergent phase behavior are found in single-chain Monte Carlo simulations, which display heating- and cooling-induced coil–globule transitions linked to energy fluctuations. The framework also capably describes a range of experimental systems. Importantly, and by contrast to many prior theoretical approaches, the framework does not employ any temperature- or composition-dependent parameters. This work provides new insights regarding the microscopic physics that underpin complex thermoresponsive behavior in polymers.
ISSN:2161-1653
2161-1653
DOI:10.1021/acsmacrolett.4c00178