Perfluoroalkyl compounds in groundwater alter the spatial pattern of health risk in an arsenic‑cadmium contaminated region

Integrated health risk assessment strategies for emerging organic pollutants and heavy metals that coexist in water/soil media are lacking. Contents of perfluoroalkyl compounds and potentially toxic elements in multiple media were determined by investigating a county where a landfill and a tungsten...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2024-09, Vol.944, p.173983, Article 173983
Hauptverfasser: Wang, Yonglu, He, Lixia, Yang, Liren, Zhang, Fengsong, Zhang, Ruicong, Wang, Huaxin, Zhang, Guixiang, Zhu, Shiliang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Integrated health risk assessment strategies for emerging organic pollutants and heavy metals that coexist in water/soil media are lacking. Contents of perfluoroalkyl compounds and potentially toxic elements in multiple media were determined by investigating a county where a landfill and a tungsten mine coexist. The spatial characteristics and sources of contaminants were predicted by Geostatistics-based and multivariate statistical analysis, and their comprehensive health risks were assessed. The average contents of perfluorooctane acid, perfluorooctanesulfonic acid, arsenic, and cadmium in groundwater were 3.21, 0.77, 1.69, and 0.14 μg L−1, respectively; the maximum content of cadmium in soils and rice highly reached 2.12 and 1.52 mg kg−1, respectively. In soils, the contribution of mine lag to cadmium was 99 %, and fertilizer and pesticide to arsenic was 59.4 %. While in groundwater, arsenic, cadmium and perfluoroalkyl compounds near the landfill mainly came from leachate leakage. Significant correlations were found between arsenic in groundwater and arsenic and cadmium in soils, as well as perfluoroalkyl compounds in groundwater and pH and sulfate. Based on these correlations, the geographically optimal similarity model predicted high-level arsenic in groundwater near the tungsten mine and cadmium/perfluoroalkyl compounds around the landfill. The combination of analytic network process, entropy weighting method and game theory-based trade-off method with risk assessment model can assess the comprehensive risks of multiple pollutants. Using this approach, a high health-risk zone located around the landfill, which was mainly attributed to the presence of arsenic, cadmium and perfluorooctanesulfonic acid, was found. Overall, perfluoroalkyl compounds in groundwater altered the spatial pattern of health risks in an arsenic‑cadmium contaminated area. [Display omitted] •Cadmium in rice was significantly correlated with copper and manganese in soil.•PFOS and arsenic was predicted in groundwater by geographically optimal similarity.•A comprehensive risk assessment strategy integrating ANP-EWM and HHRA was proposed.•The presence of PFOS increased the comprehensive health risks around the landfill.
ISSN:0048-9697
1879-1026
1879-1026
DOI:10.1016/j.scitotenv.2024.173983