Next-generation data filtering in the genomics era
Genomic data are ubiquitous across disciplines, from agriculture to biodiversity, ecology, evolution and human health. However, these datasets often contain noise or errors and are missing information that can affect the accuracy and reliability of subsequent computational analyses and conclusions....
Gespeichert in:
Veröffentlicht in: | Nature reviews. Genetics 2024-11, Vol.25 (11), p.750-767 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 767 |
---|---|
container_issue | 11 |
container_start_page | 750 |
container_title | Nature reviews. Genetics |
container_volume | 25 |
creator | Hemstrom, William Grummer, Jared A. Luikart, Gordon Christie, Mark R. |
description | Genomic data are ubiquitous across disciplines, from agriculture to biodiversity, ecology, evolution and human health. However, these datasets often contain noise or errors and are missing information that can affect the accuracy and reliability of subsequent computational analyses and conclusions. A key step in genomic data analysis is filtering — removing sequencing bases, reads, genetic variants and/or individuals from a dataset — to improve data quality for downstream analyses. Researchers are confronted with a multitude of choices when filtering genomic data; they must choose which filters to apply and select appropriate thresholds. To help usher in the next generation of genomic data filtering, we review and suggest best practices to improve the implementation, reproducibility and reporting standards for filter types and thresholds commonly applied to genomic datasets. We focus mainly on filters for minor allele frequency, missing data per individual or per locus, linkage disequilibrium and Hardy–Weinberg deviations. Using simulated and empirical datasets, we illustrate the large effects of different filtering thresholds on common population genetics statistics, such as Tajima’s
D
value, population differentiation (
F
ST
), nucleotide diversity (
π
) and effective population size (
N
e
).
Filtering genomic data is a crucial step to ensure the quality and reliability of downstream analyses. The authors provide guidance on the choice of filtering strategies and thresholds, including filters that remove sequencing bases or reads, variants, loci, genotypes or individuals from genomic datasets to improve accuracy and reproducibility. |
doi_str_mv | 10.1038/s41576-024-00738-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3068749705</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3068749705</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-7d27996ffe05c05f5831e2893b3649b329ac57e9fca94c93969c736e716f0e893</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMotlb_gAdZ8OJlNclsks1Ril8getFzSNNJ3bLdrcku6L83dWsFD55mBp55Z3gIOWX0klEor2LBhJI55UVOqYIyl3tkzArF0iiL_V0v5IgcxbiklEmm4JCMoCyVYgBjwp_wo8sX2GCwXdU22dx2NvNV3WGomkVWNVn3hlkC2lXlYpawY3LgbR3xZFsn5PX25mV6nz8-3z1Mrx9zB1x2uZpzpbX0HqlwVHhRAkNeapiBLPQMuLZOKNTeWV04DVpqp0CiYtJTTNyEXAy569C-9xg7s6qiw7q2DbZ9NEBlqQqtqEjo-R902fahSd8ZYExxqkU6PyF8oFxoYwzozTpUKxs-DaNmY9QMRk0yar6NGpmWzrbR_WyF893Kj8IEwADE9cYYht_b_8R-AZi2fm0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3117209558</pqid></control><display><type>article</type><title>Next-generation data filtering in the genomics era</title><source>Springer Nature - Complete Springer Journals</source><source>Nature</source><creator>Hemstrom, William ; Grummer, Jared A. ; Luikart, Gordon ; Christie, Mark R.</creator><creatorcontrib>Hemstrom, William ; Grummer, Jared A. ; Luikart, Gordon ; Christie, Mark R.</creatorcontrib><description>Genomic data are ubiquitous across disciplines, from agriculture to biodiversity, ecology, evolution and human health. However, these datasets often contain noise or errors and are missing information that can affect the accuracy and reliability of subsequent computational analyses and conclusions. A key step in genomic data analysis is filtering — removing sequencing bases, reads, genetic variants and/or individuals from a dataset — to improve data quality for downstream analyses. Researchers are confronted with a multitude of choices when filtering genomic data; they must choose which filters to apply and select appropriate thresholds. To help usher in the next generation of genomic data filtering, we review and suggest best practices to improve the implementation, reproducibility and reporting standards for filter types and thresholds commonly applied to genomic datasets. We focus mainly on filters for minor allele frequency, missing data per individual or per locus, linkage disequilibrium and Hardy–Weinberg deviations. Using simulated and empirical datasets, we illustrate the large effects of different filtering thresholds on common population genetics statistics, such as Tajima’s
D
value, population differentiation (
F
ST
), nucleotide diversity (
π
) and effective population size (
N
e
).
Filtering genomic data is a crucial step to ensure the quality and reliability of downstream analyses. The authors provide guidance on the choice of filtering strategies and thresholds, including filters that remove sequencing bases or reads, variants, loci, genotypes or individuals from genomic datasets to improve accuracy and reproducibility.</description><identifier>ISSN: 1471-0056</identifier><identifier>ISSN: 1471-0064</identifier><identifier>EISSN: 1471-0064</identifier><identifier>DOI: 10.1038/s41576-024-00738-6</identifier><identifier>PMID: 38877133</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/208/212 ; 631/208/457 ; Agriculture ; Animal Genetics and Genomics ; Biodiversity ; Biomedical and Life Sciences ; Biomedicine ; Cancer Research ; Datasets ; Filters ; Gene frequency ; Gene Function ; Genetic analysis ; Genetic diversity ; Genomic analysis ; Genotypes ; Human Genetics ; Linkage disequilibrium ; Population differentiation ; Population genetics ; Reproducibility ; Review Article ; Statistical analysis</subject><ispartof>Nature reviews. Genetics, 2024-11, Vol.25 (11), p.750-767</ispartof><rights>Springer Nature Limited 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. Springer Nature Limited.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c326t-7d27996ffe05c05f5831e2893b3649b329ac57e9fca94c93969c736e716f0e893</cites><orcidid>0000-0002-2408-9535 ; 0000-0001-7285-5364</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41576-024-00738-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41576-024-00738-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38877133$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hemstrom, William</creatorcontrib><creatorcontrib>Grummer, Jared A.</creatorcontrib><creatorcontrib>Luikart, Gordon</creatorcontrib><creatorcontrib>Christie, Mark R.</creatorcontrib><title>Next-generation data filtering in the genomics era</title><title>Nature reviews. Genetics</title><addtitle>Nat Rev Genet</addtitle><addtitle>Nat Rev Genet</addtitle><description>Genomic data are ubiquitous across disciplines, from agriculture to biodiversity, ecology, evolution and human health. However, these datasets often contain noise or errors and are missing information that can affect the accuracy and reliability of subsequent computational analyses and conclusions. A key step in genomic data analysis is filtering — removing sequencing bases, reads, genetic variants and/or individuals from a dataset — to improve data quality for downstream analyses. Researchers are confronted with a multitude of choices when filtering genomic data; they must choose which filters to apply and select appropriate thresholds. To help usher in the next generation of genomic data filtering, we review and suggest best practices to improve the implementation, reproducibility and reporting standards for filter types and thresholds commonly applied to genomic datasets. We focus mainly on filters for minor allele frequency, missing data per individual or per locus, linkage disequilibrium and Hardy–Weinberg deviations. Using simulated and empirical datasets, we illustrate the large effects of different filtering thresholds on common population genetics statistics, such as Tajima’s
D
value, population differentiation (
F
ST
), nucleotide diversity (
π
) and effective population size (
N
e
).
Filtering genomic data is a crucial step to ensure the quality and reliability of downstream analyses. The authors provide guidance on the choice of filtering strategies and thresholds, including filters that remove sequencing bases or reads, variants, loci, genotypes or individuals from genomic datasets to improve accuracy and reproducibility.</description><subject>631/208/212</subject><subject>631/208/457</subject><subject>Agriculture</subject><subject>Animal Genetics and Genomics</subject><subject>Biodiversity</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cancer Research</subject><subject>Datasets</subject><subject>Filters</subject><subject>Gene frequency</subject><subject>Gene Function</subject><subject>Genetic analysis</subject><subject>Genetic diversity</subject><subject>Genomic analysis</subject><subject>Genotypes</subject><subject>Human Genetics</subject><subject>Linkage disequilibrium</subject><subject>Population differentiation</subject><subject>Population genetics</subject><subject>Reproducibility</subject><subject>Review Article</subject><subject>Statistical analysis</subject><issn>1471-0056</issn><issn>1471-0064</issn><issn>1471-0064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMotlb_gAdZ8OJlNclsks1Ril8getFzSNNJ3bLdrcku6L83dWsFD55mBp55Z3gIOWX0klEor2LBhJI55UVOqYIyl3tkzArF0iiL_V0v5IgcxbiklEmm4JCMoCyVYgBjwp_wo8sX2GCwXdU22dx2NvNV3WGomkVWNVn3hlkC2lXlYpawY3LgbR3xZFsn5PX25mV6nz8-3z1Mrx9zB1x2uZpzpbX0HqlwVHhRAkNeapiBLPQMuLZOKNTeWV04DVpqp0CiYtJTTNyEXAy569C-9xg7s6qiw7q2DbZ9NEBlqQqtqEjo-R902fahSd8ZYExxqkU6PyF8oFxoYwzozTpUKxs-DaNmY9QMRk0yar6NGpmWzrbR_WyF893Kj8IEwADE9cYYht_b_8R-AZi2fm0</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Hemstrom, William</creator><creator>Grummer, Jared A.</creator><creator>Luikart, Gordon</creator><creator>Christie, Mark R.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2408-9535</orcidid><orcidid>https://orcid.org/0000-0001-7285-5364</orcidid></search><sort><creationdate>20241101</creationdate><title>Next-generation data filtering in the genomics era</title><author>Hemstrom, William ; Grummer, Jared A. ; Luikart, Gordon ; Christie, Mark R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-7d27996ffe05c05f5831e2893b3649b329ac57e9fca94c93969c736e716f0e893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>631/208/212</topic><topic>631/208/457</topic><topic>Agriculture</topic><topic>Animal Genetics and Genomics</topic><topic>Biodiversity</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cancer Research</topic><topic>Datasets</topic><topic>Filters</topic><topic>Gene frequency</topic><topic>Gene Function</topic><topic>Genetic analysis</topic><topic>Genetic diversity</topic><topic>Genomic analysis</topic><topic>Genotypes</topic><topic>Human Genetics</topic><topic>Linkage disequilibrium</topic><topic>Population differentiation</topic><topic>Population genetics</topic><topic>Reproducibility</topic><topic>Review Article</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hemstrom, William</creatorcontrib><creatorcontrib>Grummer, Jared A.</creatorcontrib><creatorcontrib>Luikart, Gordon</creatorcontrib><creatorcontrib>Christie, Mark R.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature reviews. Genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hemstrom, William</au><au>Grummer, Jared A.</au><au>Luikart, Gordon</au><au>Christie, Mark R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Next-generation data filtering in the genomics era</atitle><jtitle>Nature reviews. Genetics</jtitle><stitle>Nat Rev Genet</stitle><addtitle>Nat Rev Genet</addtitle><date>2024-11-01</date><risdate>2024</risdate><volume>25</volume><issue>11</issue><spage>750</spage><epage>767</epage><pages>750-767</pages><issn>1471-0056</issn><issn>1471-0064</issn><eissn>1471-0064</eissn><abstract>Genomic data are ubiquitous across disciplines, from agriculture to biodiversity, ecology, evolution and human health. However, these datasets often contain noise or errors and are missing information that can affect the accuracy and reliability of subsequent computational analyses and conclusions. A key step in genomic data analysis is filtering — removing sequencing bases, reads, genetic variants and/or individuals from a dataset — to improve data quality for downstream analyses. Researchers are confronted with a multitude of choices when filtering genomic data; they must choose which filters to apply and select appropriate thresholds. To help usher in the next generation of genomic data filtering, we review and suggest best practices to improve the implementation, reproducibility and reporting standards for filter types and thresholds commonly applied to genomic datasets. We focus mainly on filters for minor allele frequency, missing data per individual or per locus, linkage disequilibrium and Hardy–Weinberg deviations. Using simulated and empirical datasets, we illustrate the large effects of different filtering thresholds on common population genetics statistics, such as Tajima’s
D
value, population differentiation (
F
ST
), nucleotide diversity (
π
) and effective population size (
N
e
).
Filtering genomic data is a crucial step to ensure the quality and reliability of downstream analyses. The authors provide guidance on the choice of filtering strategies and thresholds, including filters that remove sequencing bases or reads, variants, loci, genotypes or individuals from genomic datasets to improve accuracy and reproducibility.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>38877133</pmid><doi>10.1038/s41576-024-00738-6</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-2408-9535</orcidid><orcidid>https://orcid.org/0000-0001-7285-5364</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1471-0056 |
ispartof | Nature reviews. Genetics, 2024-11, Vol.25 (11), p.750-767 |
issn | 1471-0056 1471-0064 1471-0064 |
language | eng |
recordid | cdi_proquest_miscellaneous_3068749705 |
source | Springer Nature - Complete Springer Journals; Nature |
subjects | 631/208/212 631/208/457 Agriculture Animal Genetics and Genomics Biodiversity Biomedical and Life Sciences Biomedicine Cancer Research Datasets Filters Gene frequency Gene Function Genetic analysis Genetic diversity Genomic analysis Genotypes Human Genetics Linkage disequilibrium Population differentiation Population genetics Reproducibility Review Article Statistical analysis |
title | Next-generation data filtering in the genomics era |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T19%3A42%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Next-generation%20data%20filtering%20in%20the%20genomics%20era&rft.jtitle=Nature%20reviews.%20Genetics&rft.au=Hemstrom,%20William&rft.date=2024-11-01&rft.volume=25&rft.issue=11&rft.spage=750&rft.epage=767&rft.pages=750-767&rft.issn=1471-0056&rft.eissn=1471-0064&rft_id=info:doi/10.1038/s41576-024-00738-6&rft_dat=%3Cproquest_cross%3E3068749705%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3117209558&rft_id=info:pmid/38877133&rfr_iscdi=true |