Next-generation data filtering in the genomics era

Genomic data are ubiquitous across disciplines, from agriculture to biodiversity, ecology, evolution and human health. However, these datasets often contain noise or errors and are missing information that can affect the accuracy and reliability of subsequent computational analyses and conclusions....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature reviews. Genetics 2024-11, Vol.25 (11), p.750-767
Hauptverfasser: Hemstrom, William, Grummer, Jared A., Luikart, Gordon, Christie, Mark R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Genomic data are ubiquitous across disciplines, from agriculture to biodiversity, ecology, evolution and human health. However, these datasets often contain noise or errors and are missing information that can affect the accuracy and reliability of subsequent computational analyses and conclusions. A key step in genomic data analysis is filtering — removing sequencing bases, reads, genetic variants and/or individuals from a dataset — to improve data quality for downstream analyses. Researchers are confronted with a multitude of choices when filtering genomic data; they must choose which filters to apply and select appropriate thresholds. To help usher in the next generation of genomic data filtering, we review and suggest best practices to improve the implementation, reproducibility and reporting standards for filter types and thresholds commonly applied to genomic datasets. We focus mainly on filters for minor allele frequency, missing data per individual or per locus, linkage disequilibrium and Hardy–Weinberg deviations. Using simulated and empirical datasets, we illustrate the large effects of different filtering thresholds on common population genetics statistics, such as Tajima’s D value, population differentiation ( F ST ), nucleotide diversity ( π ) and effective population size ( N e ). Filtering genomic data is a crucial step to ensure the quality and reliability of downstream analyses. The authors provide guidance on the choice of filtering strategies and thresholds, including filters that remove sequencing bases or reads, variants, loci, genotypes or individuals from genomic datasets to improve accuracy and reproducibility.
ISSN:1471-0056
1471-0064
1471-0064
DOI:10.1038/s41576-024-00738-6