Lattice Strain with Stabilized Oxygen Vacancies Boosts Ceria for Robust Alkaline Hydrogen Evolution Outperforming Benchmark Pt

Earth‐abundant metal oxides are usually considered as stable but catalytically inert toward hydrogen evolution reaction (HER) due to their unfavorable hydrogen intermediate adsorption performance. Herein, a heavy rare earth (Y) and transition metal (Co) dual‐doping induced lattice strain and oxygen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2024-08, Vol.36 (33), p.e2405970-n/a
Hauptverfasser: Liu, Xiaojing, Wei, Shuaichong, Cao, Shuyi, Zhang, Yongguang, Xue, Wei, Wang, Yanji, Liu, Guihua, Li, Jingde
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 33
container_start_page e2405970
container_title Advanced materials (Weinheim)
container_volume 36
creator Liu, Xiaojing
Wei, Shuaichong
Cao, Shuyi
Zhang, Yongguang
Xue, Wei
Wang, Yanji
Liu, Guihua
Li, Jingde
description Earth‐abundant metal oxides are usually considered as stable but catalytically inert toward hydrogen evolution reaction (HER) due to their unfavorable hydrogen intermediate adsorption performance. Herein, a heavy rare earth (Y) and transition metal (Co) dual‐doping induced lattice strain and oxygen vacancy stabilization strategy is proposed to boost CeO2 toward robust alkaline HER. The induced lattice compression and increased oxygen vacancy (Ov) concentration in CeO2 synergistically improve the water dissociation on Ov sites and sequential hydrogen adsorption at activated Ov‐neighboring sites, leading to significantly enhanced HER kinetics. Meanwhile, Y doping offers stabilization effect on Ov by its stronger Y─O bonding over Ce─O, which endows the catalyst with excellent stability. The Y,Co‐CeO2 electrocatalyst exhibits an ultra‐low HER overpotential (27 mV at 10 mA cm−2) and Tafel slope (48 mV dec−1), outperforming the benchmark Pt electrocatalyst. Moreover, the anion exchange membrane water electrolyzer incorporated with Y,Co‐CeO2 achieves excellent stability of 500 h under 600 mA cm−2. This synergistic lattice strain and oxygen vacancy stabilization strategy sheds new light on the rational development of efficient and stable oxide‐based HER electrocatalysts. A heavy rare earth (Y) and transition metal (Co) dual‐doping induced lattice strain and oxygen vacancy stabilization strategy, synergistically improve H2O dissociation and hydrogen adsorption, is reported to boost CeO2 for alkaline hydrogen evolution outperforming benchmark Pt. Meanwhile, Y doping stabilized oxygen vacancies due to the stronger Y─O bond than Ce─O, endowing the Y,Co‐CeO2 with excellent stability.
doi_str_mv 10.1002/adma.202405970
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3067916201</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3067916201</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3120-168c1e3bced0cfbd92b8d7693714632d7be9ca1e2fe5aea89dad4aea90e0e1503</originalsourceid><addsrcrecordid>eNqF0c9v0zAUB3ALgVg3uHJElrhwSXm2Eyc-dmUwpKIifl0jx37ZvKVxZzts5cDfjquOIXHh5Hf4vK-e9SXkBYM5A-BvtN3oOQdeQqVqeERmrOKsKEFVj8kMlKgKJcvmiBzHeAUASoJ8So5E00gpGj4jv1Y6JWeQfklBu5HeunSZZ925wf1ES9d3uwsc6Xdt9GgcRnrqfUyRLjE4TXsf6GffTTHRxXCtBzciPd_Z4Pc7Zz_8MCXnR7qe0hZDxhs3XtBTHM3lRodr-ik9I096PUR8fv-ekG_vzr4uz4vV-v2H5WJVGME4FEw2hqHoDFowfWcV7xpbSyVqVkrBbd2hMpoh77HSqBtltS3zoAABWQXihLw-5G6Dv5kwpnbjosFh0CP6KbYCZK2Y5MAyffUPvfJTGPN1WSkBpWJVldX8oEzwMQbs221w-VO7lkG7b6bdN9M-NJMXXt7HTt0G7QP_U0UG6gBu3YC7_8S1i7cfF3_DfwMVh5xt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3093049155</pqid></control><display><type>article</type><title>Lattice Strain with Stabilized Oxygen Vacancies Boosts Ceria for Robust Alkaline Hydrogen Evolution Outperforming Benchmark Pt</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Liu, Xiaojing ; Wei, Shuaichong ; Cao, Shuyi ; Zhang, Yongguang ; Xue, Wei ; Wang, Yanji ; Liu, Guihua ; Li, Jingde</creator><creatorcontrib>Liu, Xiaojing ; Wei, Shuaichong ; Cao, Shuyi ; Zhang, Yongguang ; Xue, Wei ; Wang, Yanji ; Liu, Guihua ; Li, Jingde</creatorcontrib><description>Earth‐abundant metal oxides are usually considered as stable but catalytically inert toward hydrogen evolution reaction (HER) due to their unfavorable hydrogen intermediate adsorption performance. Herein, a heavy rare earth (Y) and transition metal (Co) dual‐doping induced lattice strain and oxygen vacancy stabilization strategy is proposed to boost CeO2 toward robust alkaline HER. The induced lattice compression and increased oxygen vacancy (Ov) concentration in CeO2 synergistically improve the water dissociation on Ov sites and sequential hydrogen adsorption at activated Ov‐neighboring sites, leading to significantly enhanced HER kinetics. Meanwhile, Y doping offers stabilization effect on Ov by its stronger Y─O bonding over Ce─O, which endows the catalyst with excellent stability. The Y,Co‐CeO2 electrocatalyst exhibits an ultra‐low HER overpotential (27 mV at 10 mA cm−2) and Tafel slope (48 mV dec−1), outperforming the benchmark Pt electrocatalyst. Moreover, the anion exchange membrane water electrolyzer incorporated with Y,Co‐CeO2 achieves excellent stability of 500 h under 600 mA cm−2. This synergistic lattice strain and oxygen vacancy stabilization strategy sheds new light on the rational development of efficient and stable oxide‐based HER electrocatalysts. A heavy rare earth (Y) and transition metal (Co) dual‐doping induced lattice strain and oxygen vacancy stabilization strategy, synergistically improve H2O dissociation and hydrogen adsorption, is reported to boost CeO2 for alkaline hydrogen evolution outperforming benchmark Pt. Meanwhile, Y doping stabilized oxygen vacancies due to the stronger Y─O bond than Ce─O, endowing the Y,Co‐CeO2 with excellent stability.</description><identifier>ISSN: 0935-9648</identifier><identifier>ISSN: 1521-4095</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202405970</identifier><identifier>PMID: 38866382</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Adsorption ; Anion exchanging ; Benchmarks ; Bonding strength ; cation doping ; ceria ; Cerium oxides ; Doping ; Electrocatalysts ; Hydrogen ; hydrogen evolution reaction ; Hydrogen evolution reactions ; Lattice strain ; Lattice vacancies ; Metal oxides ; Oxygen ; oxygen vacancies ; Reaction kinetics ; Robustness ; Stability ; Stabilization ; Transition metals ; Yttrium</subject><ispartof>Advanced materials (Weinheim), 2024-08, Vol.36 (33), p.e2405970-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>This article is protected by copyright. All rights reserved.</rights><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3120-168c1e3bced0cfbd92b8d7693714632d7be9ca1e2fe5aea89dad4aea90e0e1503</cites><orcidid>0000-0002-1300-1630</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202405970$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202405970$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38866382$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Xiaojing</creatorcontrib><creatorcontrib>Wei, Shuaichong</creatorcontrib><creatorcontrib>Cao, Shuyi</creatorcontrib><creatorcontrib>Zhang, Yongguang</creatorcontrib><creatorcontrib>Xue, Wei</creatorcontrib><creatorcontrib>Wang, Yanji</creatorcontrib><creatorcontrib>Liu, Guihua</creatorcontrib><creatorcontrib>Li, Jingde</creatorcontrib><title>Lattice Strain with Stabilized Oxygen Vacancies Boosts Ceria for Robust Alkaline Hydrogen Evolution Outperforming Benchmark Pt</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Earth‐abundant metal oxides are usually considered as stable but catalytically inert toward hydrogen evolution reaction (HER) due to their unfavorable hydrogen intermediate adsorption performance. Herein, a heavy rare earth (Y) and transition metal (Co) dual‐doping induced lattice strain and oxygen vacancy stabilization strategy is proposed to boost CeO2 toward robust alkaline HER. The induced lattice compression and increased oxygen vacancy (Ov) concentration in CeO2 synergistically improve the water dissociation on Ov sites and sequential hydrogen adsorption at activated Ov‐neighboring sites, leading to significantly enhanced HER kinetics. Meanwhile, Y doping offers stabilization effect on Ov by its stronger Y─O bonding over Ce─O, which endows the catalyst with excellent stability. The Y,Co‐CeO2 electrocatalyst exhibits an ultra‐low HER overpotential (27 mV at 10 mA cm−2) and Tafel slope (48 mV dec−1), outperforming the benchmark Pt electrocatalyst. Moreover, the anion exchange membrane water electrolyzer incorporated with Y,Co‐CeO2 achieves excellent stability of 500 h under 600 mA cm−2. This synergistic lattice strain and oxygen vacancy stabilization strategy sheds new light on the rational development of efficient and stable oxide‐based HER electrocatalysts. A heavy rare earth (Y) and transition metal (Co) dual‐doping induced lattice strain and oxygen vacancy stabilization strategy, synergistically improve H2O dissociation and hydrogen adsorption, is reported to boost CeO2 for alkaline hydrogen evolution outperforming benchmark Pt. Meanwhile, Y doping stabilized oxygen vacancies due to the stronger Y─O bond than Ce─O, endowing the Y,Co‐CeO2 with excellent stability.</description><subject>Adsorption</subject><subject>Anion exchanging</subject><subject>Benchmarks</subject><subject>Bonding strength</subject><subject>cation doping</subject><subject>ceria</subject><subject>Cerium oxides</subject><subject>Doping</subject><subject>Electrocatalysts</subject><subject>Hydrogen</subject><subject>hydrogen evolution reaction</subject><subject>Hydrogen evolution reactions</subject><subject>Lattice strain</subject><subject>Lattice vacancies</subject><subject>Metal oxides</subject><subject>Oxygen</subject><subject>oxygen vacancies</subject><subject>Reaction kinetics</subject><subject>Robustness</subject><subject>Stability</subject><subject>Stabilization</subject><subject>Transition metals</subject><subject>Yttrium</subject><issn>0935-9648</issn><issn>1521-4095</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqF0c9v0zAUB3ALgVg3uHJElrhwSXm2Eyc-dmUwpKIifl0jx37ZvKVxZzts5cDfjquOIXHh5Hf4vK-e9SXkBYM5A-BvtN3oOQdeQqVqeERmrOKsKEFVj8kMlKgKJcvmiBzHeAUASoJ8So5E00gpGj4jv1Y6JWeQfklBu5HeunSZZ925wf1ES9d3uwsc6Xdt9GgcRnrqfUyRLjE4TXsf6GffTTHRxXCtBzciPd_Z4Pc7Zz_8MCXnR7qe0hZDxhs3XtBTHM3lRodr-ik9I096PUR8fv-ekG_vzr4uz4vV-v2H5WJVGME4FEw2hqHoDFowfWcV7xpbSyVqVkrBbd2hMpoh77HSqBtltS3zoAABWQXihLw-5G6Dv5kwpnbjosFh0CP6KbYCZK2Y5MAyffUPvfJTGPN1WSkBpWJVldX8oEzwMQbs221w-VO7lkG7b6bdN9M-NJMXXt7HTt0G7QP_U0UG6gBu3YC7_8S1i7cfF3_DfwMVh5xt</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Liu, Xiaojing</creator><creator>Wei, Shuaichong</creator><creator>Cao, Shuyi</creator><creator>Zhang, Yongguang</creator><creator>Xue, Wei</creator><creator>Wang, Yanji</creator><creator>Liu, Guihua</creator><creator>Li, Jingde</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1300-1630</orcidid></search><sort><creationdate>20240801</creationdate><title>Lattice Strain with Stabilized Oxygen Vacancies Boosts Ceria for Robust Alkaline Hydrogen Evolution Outperforming Benchmark Pt</title><author>Liu, Xiaojing ; Wei, Shuaichong ; Cao, Shuyi ; Zhang, Yongguang ; Xue, Wei ; Wang, Yanji ; Liu, Guihua ; Li, Jingde</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3120-168c1e3bced0cfbd92b8d7693714632d7be9ca1e2fe5aea89dad4aea90e0e1503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adsorption</topic><topic>Anion exchanging</topic><topic>Benchmarks</topic><topic>Bonding strength</topic><topic>cation doping</topic><topic>ceria</topic><topic>Cerium oxides</topic><topic>Doping</topic><topic>Electrocatalysts</topic><topic>Hydrogen</topic><topic>hydrogen evolution reaction</topic><topic>Hydrogen evolution reactions</topic><topic>Lattice strain</topic><topic>Lattice vacancies</topic><topic>Metal oxides</topic><topic>Oxygen</topic><topic>oxygen vacancies</topic><topic>Reaction kinetics</topic><topic>Robustness</topic><topic>Stability</topic><topic>Stabilization</topic><topic>Transition metals</topic><topic>Yttrium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xiaojing</creatorcontrib><creatorcontrib>Wei, Shuaichong</creatorcontrib><creatorcontrib>Cao, Shuyi</creatorcontrib><creatorcontrib>Zhang, Yongguang</creatorcontrib><creatorcontrib>Xue, Wei</creatorcontrib><creatorcontrib>Wang, Yanji</creatorcontrib><creatorcontrib>Liu, Guihua</creatorcontrib><creatorcontrib>Li, Jingde</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Xiaojing</au><au>Wei, Shuaichong</au><au>Cao, Shuyi</au><au>Zhang, Yongguang</au><au>Xue, Wei</au><au>Wang, Yanji</au><au>Liu, Guihua</au><au>Li, Jingde</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lattice Strain with Stabilized Oxygen Vacancies Boosts Ceria for Robust Alkaline Hydrogen Evolution Outperforming Benchmark Pt</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2024-08-01</date><risdate>2024</risdate><volume>36</volume><issue>33</issue><spage>e2405970</spage><epage>n/a</epage><pages>e2405970-n/a</pages><issn>0935-9648</issn><issn>1521-4095</issn><eissn>1521-4095</eissn><abstract>Earth‐abundant metal oxides are usually considered as stable but catalytically inert toward hydrogen evolution reaction (HER) due to their unfavorable hydrogen intermediate adsorption performance. Herein, a heavy rare earth (Y) and transition metal (Co) dual‐doping induced lattice strain and oxygen vacancy stabilization strategy is proposed to boost CeO2 toward robust alkaline HER. The induced lattice compression and increased oxygen vacancy (Ov) concentration in CeO2 synergistically improve the water dissociation on Ov sites and sequential hydrogen adsorption at activated Ov‐neighboring sites, leading to significantly enhanced HER kinetics. Meanwhile, Y doping offers stabilization effect on Ov by its stronger Y─O bonding over Ce─O, which endows the catalyst with excellent stability. The Y,Co‐CeO2 electrocatalyst exhibits an ultra‐low HER overpotential (27 mV at 10 mA cm−2) and Tafel slope (48 mV dec−1), outperforming the benchmark Pt electrocatalyst. Moreover, the anion exchange membrane water electrolyzer incorporated with Y,Co‐CeO2 achieves excellent stability of 500 h under 600 mA cm−2. This synergistic lattice strain and oxygen vacancy stabilization strategy sheds new light on the rational development of efficient and stable oxide‐based HER electrocatalysts. A heavy rare earth (Y) and transition metal (Co) dual‐doping induced lattice strain and oxygen vacancy stabilization strategy, synergistically improve H2O dissociation and hydrogen adsorption, is reported to boost CeO2 for alkaline hydrogen evolution outperforming benchmark Pt. Meanwhile, Y doping stabilized oxygen vacancies due to the stronger Y─O bond than Ce─O, endowing the Y,Co‐CeO2 with excellent stability.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38866382</pmid><doi>10.1002/adma.202405970</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1300-1630</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2024-08, Vol.36 (33), p.e2405970-n/a
issn 0935-9648
1521-4095
1521-4095
language eng
recordid cdi_proquest_miscellaneous_3067916201
source Wiley Online Library Journals Frontfile Complete
subjects Adsorption
Anion exchanging
Benchmarks
Bonding strength
cation doping
ceria
Cerium oxides
Doping
Electrocatalysts
Hydrogen
hydrogen evolution reaction
Hydrogen evolution reactions
Lattice strain
Lattice vacancies
Metal oxides
Oxygen
oxygen vacancies
Reaction kinetics
Robustness
Stability
Stabilization
Transition metals
Yttrium
title Lattice Strain with Stabilized Oxygen Vacancies Boosts Ceria for Robust Alkaline Hydrogen Evolution Outperforming Benchmark Pt
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T13%3A51%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lattice%20Strain%20with%20Stabilized%20Oxygen%20Vacancies%20Boosts%20Ceria%20for%20Robust%20Alkaline%20Hydrogen%20Evolution%20Outperforming%20Benchmark%20Pt&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Liu,%20Xiaojing&rft.date=2024-08-01&rft.volume=36&rft.issue=33&rft.spage=e2405970&rft.epage=n/a&rft.pages=e2405970-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202405970&rft_dat=%3Cproquest_cross%3E3067916201%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3093049155&rft_id=info:pmid/38866382&rfr_iscdi=true