An affordable label-free ultrasensitive immunosensor based on gold nanoparticles deposited on glassy carbon electrode for the transferrin receptor detection

In recent decades, there has been a concerning and consistent rise in the incidence of cancer, posing a significant threat to human health and overall quality of life. The transferrin receptor (TfR) is one of the most crucial protein biomarkers observed to be overexpressed in various cancers. This s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of biological macromolecules 2024-07, Vol.273 (Pt 2), p.133083, Article 133083
Hauptverfasser: Ahmad, Abrar, Rabbani, Gulam, Zamzami, Mazin A., Hosawi, Salman, Baothman, Othman A., Altayeb, Hisham, Akhtar, Muhammad Shahid Nadeem, Ahmad, Varish, Khan, Mohsin Vahid, Khan, Mohammad Ehtisham, Kim, Se Hyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In recent decades, there has been a concerning and consistent rise in the incidence of cancer, posing a significant threat to human health and overall quality of life. The transferrin receptor (TfR) is one of the most crucial protein biomarkers observed to be overexpressed in various cancers. This study reports on the development of a novel voltammetric immunosensor for TfR detection. The electrochemical platform was made up of a glassy carbon electrode (GCE) functionalized with gold nanoparticles (AuNPs), on which anti-TfR was immobilized. The surface characteristics and electrochemical behaviors of the modified electrodes were comprehensively investigated through scanning electron microscopy, XPS, Raman spectroscopy FT-IR, electrochemical cyclic voltammetry and impedance spectroscopy. The developed immunosensor exhibited robust analytical performance with TfR fortified buffer solution, showing a linear range (LR) response from 0.01 to 3000 μg/mL, with a limit of detection (LOD) of 0.01 μg/mL and reproducibility (RSD
ISSN:0141-8130
1879-0003
1879-0003
DOI:10.1016/j.ijbiomac.2024.133083