Tumour microenvironment characterisation to stratify patients for hyperthermic intraperitoneal chemotherapy in high-grade serous ovarian cancer (OVHIPEC-1)

Background Hyperthermic intraperitoneal chemotherapy (HIPEC) improves survival in patients with Stage III ovarian cancer following interval cytoreductive surgery (CRS). Optimising patient selection is essential to maximise treatment efficacy and avoid overtreatment. This study aimed to identify biom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:British journal of cancer 2024-08, Vol.131 (3), p.565-576
Hauptverfasser: Aronson, S. Lot, Walker, Cédric, Thijssen, Bram, van de Vijver, Koen K., Horlings, Hugo M., Sanders, Joyce, Alkemade, Maartje, Koole, Simone N., Lopez-Yurda, Marta, Lok, Christianne A. R., Rottenberg, Sven, van Rheenen, Jacco, Sonke, Gabe S., van Driel, Willemien J., Kester, Lennart A., Hahn, Kerstin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background Hyperthermic intraperitoneal chemotherapy (HIPEC) improves survival in patients with Stage III ovarian cancer following interval cytoreductive surgery (CRS). Optimising patient selection is essential to maximise treatment efficacy and avoid overtreatment. This study aimed to identify biomarkers that predict HIPEC benefit by analysing gene signatures and cellular composition of tumours from participants in the OVHIPEC-1 trial. Methods Whole-transcriptome RNA sequencing data were retrieved from high-grade serous ovarian cancer (HGSOC) samples from 147 patients obtained during interval CRS. We performed differential gene expression analysis and applied deconvolution methods to estimate cell-type proportions in bulk mRNA data, validated by histological assessment. We tested the interaction between treatment and potential predictors on progression-free survival using Cox proportional hazards models. Results While differential gene expression analysis did not yield any predictive biomarkers, the cellular composition, as characterised by deconvolution, indicated that the absence of macrophages and the presence of B cells in the tumour microenvironment are potential predictors of HIPEC benefit. The histological assessment confirmed the predictive value of macrophage absence. Conclusion Immune cell composition, in particular macrophages absence, may predict response to HIPEC in HGSOC and these hypothesis-generating findings warrant further investigation. Clinical trial registration NCT00426257.
ISSN:0007-0920
1532-1827
1532-1827
DOI:10.1038/s41416-024-02731-6