Ultrasensitive dynamic light scattering immunodetection of alpha-fetoprotein using heptamer-amplified nanoparticle crosslinking aggregation

A novel construction strategy is introduced for an ultrasensitive dynamic light scattering (DLS) immunosensor targeting alpha fetoprotein (AFP). This approach relies on a self-assembled heptamer fusion protein (A1-C4bpα), incorporating the dual functions of multivalent recognition and crosslinking a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mikrochimica acta (1966) 2024-07, Vol.191 (7), p.387, Article 387
Hauptverfasser: Ding, Lu, Hu, Jiaqi, Liu, Xing, Zeng, Junyi, Hu, Zhiwen, Chen, Jing, Zhu, Kang, Duan, Hong, Huang, Xiaolin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A novel construction strategy is introduced for an ultrasensitive dynamic light scattering (DLS) immunosensor targeting alpha fetoprotein (AFP). This approach relies on a self-assembled heptamer fusion protein (A1-C4bpα), incorporating the dual functions of multivalent recognition and crosslinking aggregation amplification due to the presence of seven AFP-specific A1 nanobodies on the A1-C4bpα heptamer. Leveraging antibody-functionalized magnetic nanoparticles for target AFP capture and DLS signal output, the proposed heptamer-assisted DLS immunosensor offers high sensitivity, strong specificity, and ease of operation. Under the optimized conditions, the designed DLS immunosensor demonstrates excellent linear detection of AFP in the concentration range 0.06 ng mL −1 to 512 ng mL −1 , with a detection limit of 15 pg mL −1 . The selectivity, accuracy, precision, practicability, and reliability of this newly developed method were further validated through an assay of AFP levels in spiked and actual human serum samples. This work introduces a novel approach for constructing ultrasensitive DLS immunosensors, easily extendable to the sensitive determination of other targets via simply replacing the nanobody sequence, holding great promise in various applications, particularly in disease diagnosis. Graphical abstract
ISSN:0026-3672
1436-5073
1436-5073
DOI:10.1007/s00604-024-06437-7