Patient-specific reference model estimation for orthognathic surgical planning

Purpose: Accurate estimation of reference bony shape models is fundamental for orthognathic surgical planning. Existing methods to derive this model are of two types: one determines the reference model by estimating the deformation field to correct the patient’s deformed jaw, often introducing disto...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for computer assisted radiology and surgery 2024-07, Vol.19 (7), p.1439-1447
Hauptverfasser: Fang, Xi, Deng, Hannah H., Kuang, Tianshu, Xu, Xuanang, Lee, Jungwook, Gateno, Jaime, Yan, Pingkun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose: Accurate estimation of reference bony shape models is fundamental for orthognathic surgical planning. Existing methods to derive this model are of two types: one determines the reference model by estimating the deformation field to correct the patient’s deformed jaw, often introducing distortions in the predicted reference model; The other derives the reference model using a linear combination of their landmarks/vertices but overlooks the intricate nonlinear relationship between the subjects, compromising the model’s precision and quality. Methods: We have created a self-supervised learning framework to estimate the reference model. The core of this framework is a deep query network, which estimates the similarity scores between the patient’s midface and those of the normal subjects in a high-dimensional space. Subsequently, it aggregates high-dimensional features of these subjects and projects these features back to 3D structures, ultimately achieving a patient-specific reference model. Results: Our approach was trained using a dataset of 51 normal subjects and tested on 30 patient subjects to estimate their reference models. Performance assessment against the actual post-operative bone revealed a mean Chamfer distance error of 2.25 mm and an average surface distance error of 2.30 mm across the patient subjects. Conclusion: Our proposed method emphasizes the correlation between the patients and the normal subjects in a high-dimensional space, facilitating the generation of the patient-specific reference model. Both qualitative and quantitative results demonstrate its superiority over current state-of-the-art methods in reference model estimation.
ISSN:1861-6429
1861-6429
DOI:10.1007/s11548-024-03123-0