Radiation hardness of open Fabry-Pérot microcavities
High-finesse microcavities offer a platform for compact, high-precision sensing by employing high-reflectivity, low-loss mirrors to create effective optical path lengths that are orders of magnitude larger than the device geometry. Here, we investigate the radiation hardness of Fabry-Pérot microcavi...
Gespeichert in:
Veröffentlicht in: | Optics express 2024-05, Vol.32 (10), p.17189-17196 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | High-finesse microcavities offer a platform for compact, high-precision sensing by employing high-reflectivity, low-loss mirrors to create effective optical path lengths that are orders of magnitude larger than the device geometry. Here, we investigate the radiation hardness of Fabry-Pérot microcavities formed from dielectric mirrors deposited on the tips of optical fibers. The microcavities are irradiated under both conventional (∼ 0.1 Gy/s) and ultrahigh (FLASH, ∼ 20 Gy/s) radiotherapy dose rates. Within our measurement sensitivity of ∼ 40 ppm loss, we observe no degradation in the mirror absorption after irradiation with over 300 Gy accumulated dose. This result highlights the excellent radiation hardness of the dielectric mirrors forming the cavities, enabling new optics-based, real-time, in-vivo, tissue-equivalent radiation dosimeters with ∼ 10 micron spatial resolution (our motivation), as well as other applications in high-radiation environments. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.522332 |