Snapshot dual-wavelength digital holography with LED and laser hybrid illumination
To address the problem of the time-sharing recording of dual-wavelength low-coherence holograms while avoiding the use of customized achromatic optical elements, a snapshot dual-wavelength digital holography with LED and laser hybrid illumination is proposed. In this method, the parallel phase-shift...
Gespeichert in:
Veröffentlicht in: | Optics express 2024-04, Vol.32 (8), p.14154-14168 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To address the problem of the time-sharing recording of dual-wavelength low-coherence holograms while avoiding the use of customized achromatic optical elements, a snapshot dual-wavelength digital holography with LED and laser hybrid illumination is proposed. In this method, the parallel phase-shifting method is firstly employed to suppress zero-order and twin-image noise, and to record a LED hologram with low speckle noise and full field of view. Secondly, another laser hologram with a different center wavelength affected by speckle noise is recorded simultaneously using the spatial multiplexing technique. Finally, dual-wavelength wrapped phase images are reconstructed from a spatial multiplexing hologram, and then are combined to achieve low-noise phase unwrapping utilizing the iterative algorithm. Simulation and optical experiments on a reflective step with a depth of 1.38µm demonstrate that the proposed method can achieve single-shot and large-range height measurements while maintaining low-noise and full-field imaging. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.521437 |