Non-Abelian Topological Phases and Their Quotient Relations in Acoustic Systems

Non-Abelian topological phases (NATPs) exhibit enigmatic intrinsic physics distinct from well-established Abelian topological phases, while lacking straightforward configuration and manipulation, especially for classical waves. In this Letter, we exploit novel braiding-type couplings among a pair of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2024-05, Vol.132 (21), p.216602-216602, Article 216602
Hauptverfasser: Sun, Xiao-Chen, Wang, Jia-Bao, He, Cheng, Chen, Yan-Feng
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 216602
container_issue 21
container_start_page 216602
container_title Physical review letters
container_volume 132
creator Sun, Xiao-Chen
Wang, Jia-Bao
He, Cheng
Chen, Yan-Feng
description Non-Abelian topological phases (NATPs) exhibit enigmatic intrinsic physics distinct from well-established Abelian topological phases, while lacking straightforward configuration and manipulation, especially for classical waves. In this Letter, we exploit novel braiding-type couplings among a pair of triple-component acoustic dipoles, which act as functional elements with effective imaginary couplings. Sequencing them in one dimension allows us to generate acoustic NATPs in a compact yet time-reversal invariant Hermitian system. We further provide the whole phase diagram that encompasses all i, j, and k non-Abelian phases, and directly demonstrate their unique quotient relations via different end point states. Our NATPs based on real-space braiding may inspire the exploration of acoustic devices with non-commutative characters.
doi_str_mv 10.1103/PhysRevLett.132.216602
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3066335320</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3066335320</sourcerecordid><originalsourceid>FETCH-LOGICAL-c258t-971e23c0927008f6e2068b4cf41fa0c8b24e085d20827805fbfa71ff6f37fbb13</originalsourceid><addsrcrecordid>eNpN0MtOwzAQBVALgWgp_ELlJZuUsZ047rJCvKSKllLWkeOOqVESl9hB6t8T1IJYzebemdEhZMxgwhiIm-V2H1b4NccYJ0zwCWdSAj8hQwb5NMkZS0_JEECwZAqQD8hFCB8AwLhU52QglMokl3xIFs--SWYlVk43dO13vvLvzuiKLrc6YKC62dD1Fl1LXzofHTaRrrDS0fkmUNfQmfFdiM7Q132IWIdLcmZ1FfDqOEfk7f5uffuYzBcPT7ezeWJ4pmIyzRlyYWDKcwBlJXKQqkyNTZnVYFTJUwSVbTgonivIbGl1zqyVVuS2LJkYkevD3l3rPzsMsahdMFhVusH-o0KAlEJkgkMflYeoaX0ILdpi17pat_uCQfGDWfzDLHrM4oDZF8fHG11Z4-av9qsnvgHxrnL-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3066335320</pqid></control><display><type>article</type><title>Non-Abelian Topological Phases and Their Quotient Relations in Acoustic Systems</title><source>American Physical Society Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Sun, Xiao-Chen ; Wang, Jia-Bao ; He, Cheng ; Chen, Yan-Feng</creator><creatorcontrib>Sun, Xiao-Chen ; Wang, Jia-Bao ; He, Cheng ; Chen, Yan-Feng</creatorcontrib><description>Non-Abelian topological phases (NATPs) exhibit enigmatic intrinsic physics distinct from well-established Abelian topological phases, while lacking straightforward configuration and manipulation, especially for classical waves. In this Letter, we exploit novel braiding-type couplings among a pair of triple-component acoustic dipoles, which act as functional elements with effective imaginary couplings. Sequencing them in one dimension allows us to generate acoustic NATPs in a compact yet time-reversal invariant Hermitian system. We further provide the whole phase diagram that encompasses all i, j, and k non-Abelian phases, and directly demonstrate their unique quotient relations via different end point states. Our NATPs based on real-space braiding may inspire the exploration of acoustic devices with non-commutative characters.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.132.216602</identifier><identifier>PMID: 38856262</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review letters, 2024-05, Vol.132 (21), p.216602-216602, Article 216602</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c258t-971e23c0927008f6e2068b4cf41fa0c8b24e085d20827805fbfa71ff6f37fbb13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38856262$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Xiao-Chen</creatorcontrib><creatorcontrib>Wang, Jia-Bao</creatorcontrib><creatorcontrib>He, Cheng</creatorcontrib><creatorcontrib>Chen, Yan-Feng</creatorcontrib><title>Non-Abelian Topological Phases and Their Quotient Relations in Acoustic Systems</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>Non-Abelian topological phases (NATPs) exhibit enigmatic intrinsic physics distinct from well-established Abelian topological phases, while lacking straightforward configuration and manipulation, especially for classical waves. In this Letter, we exploit novel braiding-type couplings among a pair of triple-component acoustic dipoles, which act as functional elements with effective imaginary couplings. Sequencing them in one dimension allows us to generate acoustic NATPs in a compact yet time-reversal invariant Hermitian system. We further provide the whole phase diagram that encompasses all i, j, and k non-Abelian phases, and directly demonstrate their unique quotient relations via different end point states. Our NATPs based on real-space braiding may inspire the exploration of acoustic devices with non-commutative characters.</description><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpN0MtOwzAQBVALgWgp_ELlJZuUsZ047rJCvKSKllLWkeOOqVESl9hB6t8T1IJYzebemdEhZMxgwhiIm-V2H1b4NccYJ0zwCWdSAj8hQwb5NMkZS0_JEECwZAqQD8hFCB8AwLhU52QglMokl3xIFs--SWYlVk43dO13vvLvzuiKLrc6YKC62dD1Fl1LXzofHTaRrrDS0fkmUNfQmfFdiM7Q132IWIdLcmZ1FfDqOEfk7f5uffuYzBcPT7ezeWJ4pmIyzRlyYWDKcwBlJXKQqkyNTZnVYFTJUwSVbTgonivIbGl1zqyVVuS2LJkYkevD3l3rPzsMsahdMFhVusH-o0KAlEJkgkMflYeoaX0ILdpi17pat_uCQfGDWfzDLHrM4oDZF8fHG11Z4-av9qsnvgHxrnL-</recordid><startdate>20240524</startdate><enddate>20240524</enddate><creator>Sun, Xiao-Chen</creator><creator>Wang, Jia-Bao</creator><creator>He, Cheng</creator><creator>Chen, Yan-Feng</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20240524</creationdate><title>Non-Abelian Topological Phases and Their Quotient Relations in Acoustic Systems</title><author>Sun, Xiao-Chen ; Wang, Jia-Bao ; He, Cheng ; Chen, Yan-Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c258t-971e23c0927008f6e2068b4cf41fa0c8b24e085d20827805fbfa71ff6f37fbb13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Xiao-Chen</creatorcontrib><creatorcontrib>Wang, Jia-Bao</creatorcontrib><creatorcontrib>He, Cheng</creatorcontrib><creatorcontrib>Chen, Yan-Feng</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Xiao-Chen</au><au>Wang, Jia-Bao</au><au>He, Cheng</au><au>Chen, Yan-Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-Abelian Topological Phases and Their Quotient Relations in Acoustic Systems</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2024-05-24</date><risdate>2024</risdate><volume>132</volume><issue>21</issue><spage>216602</spage><epage>216602</epage><pages>216602-216602</pages><artnum>216602</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>Non-Abelian topological phases (NATPs) exhibit enigmatic intrinsic physics distinct from well-established Abelian topological phases, while lacking straightforward configuration and manipulation, especially for classical waves. In this Letter, we exploit novel braiding-type couplings among a pair of triple-component acoustic dipoles, which act as functional elements with effective imaginary couplings. Sequencing them in one dimension allows us to generate acoustic NATPs in a compact yet time-reversal invariant Hermitian system. We further provide the whole phase diagram that encompasses all i, j, and k non-Abelian phases, and directly demonstrate their unique quotient relations via different end point states. Our NATPs based on real-space braiding may inspire the exploration of acoustic devices with non-commutative characters.</abstract><cop>United States</cop><pmid>38856262</pmid><doi>10.1103/PhysRevLett.132.216602</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2024-05, Vol.132 (21), p.216602-216602, Article 216602
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_3066335320
source American Physical Society Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title Non-Abelian Topological Phases and Their Quotient Relations in Acoustic Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T11%3A45%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-Abelian%20Topological%20Phases%20and%20Their%20Quotient%20Relations%20in%20Acoustic%20Systems&rft.jtitle=Physical%20review%20letters&rft.au=Sun,%20Xiao-Chen&rft.date=2024-05-24&rft.volume=132&rft.issue=21&rft.spage=216602&rft.epage=216602&rft.pages=216602-216602&rft.artnum=216602&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.132.216602&rft_dat=%3Cproquest_cross%3E3066335320%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3066335320&rft_id=info:pmid/38856262&rfr_iscdi=true