Non-Abelian Topological Phases and Their Quotient Relations in Acoustic Systems

Non-Abelian topological phases (NATPs) exhibit enigmatic intrinsic physics distinct from well-established Abelian topological phases, while lacking straightforward configuration and manipulation, especially for classical waves. In this Letter, we exploit novel braiding-type couplings among a pair of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2024-05, Vol.132 (21), p.216602-216602, Article 216602
Hauptverfasser: Sun, Xiao-Chen, Wang, Jia-Bao, He, Cheng, Chen, Yan-Feng
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Non-Abelian topological phases (NATPs) exhibit enigmatic intrinsic physics distinct from well-established Abelian topological phases, while lacking straightforward configuration and manipulation, especially for classical waves. In this Letter, we exploit novel braiding-type couplings among a pair of triple-component acoustic dipoles, which act as functional elements with effective imaginary couplings. Sequencing them in one dimension allows us to generate acoustic NATPs in a compact yet time-reversal invariant Hermitian system. We further provide the whole phase diagram that encompasses all i, j, and k non-Abelian phases, and directly demonstrate their unique quotient relations via different end point states. Our NATPs based on real-space braiding may inspire the exploration of acoustic devices with non-commutative characters.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.132.216602