Comparative analysis of C n2 estimation methods for sonic anemometer data
Wind speed and sonic temperature measured with ultrasonic anemometers are often utilized to estimate the refractive index structure parameter C n2, a vital parameter for optical propagation. In this work, we compare four methods to estimate C n2 from C T2, using the same temporal sonic temperature d...
Gespeichert in:
Veröffentlicht in: | Applied optics. Optical technology and biomedical optics 2024-06, Vol.63 (16), p.E94-E106 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | E106 |
---|---|
container_issue | 16 |
container_start_page | E94 |
container_title | Applied optics. Optical technology and biomedical optics |
container_volume | 63 |
creator | Beason, Melissa Potvin, Guy Sprung, Detlev McCrae, Jack Gladysz, Szymon |
description | Wind speed and sonic temperature measured with ultrasonic anemometers are often utilized to estimate the refractive index structure parameter C n2, a vital parameter for optical propagation. In this work, we compare four methods to estimate C n2 from C T2, using the same temporal sonic temperature data streams for two separated sonic anemometers on a homogenous path. Values of C n2 obtained with these four methods using field trial data are compared to those from a commercial scintillometer and from the differential image motion method using a grid of light sources positioned at the end of a common path. In addition to the comparison between the methods, we also consider appropriate error bars for C n2 based on sonic temperature considering only the errors from having a finite number of turbulent samples. The Bayesian and power spectral methods were found to give adequate estimates for strong turbulence levels but consistently overestimated the C n2 for weak turbulence. The nearest neighbors and structure function methods performed well under all turbulence strengths tested. |
doi_str_mv | 10.1364/AO.520976 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_3066335167</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3066335167</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_30663351673</originalsourceid><addsrcrecordid>eNqVjrsKwkAURBdBMD4K_-CWNsZ9JBtSSlC0srEPS7LBlWxuzE0E_94t_AGrgZkzwzC2FTwWSieH4y1OJc8zPWORSFW-T1IpF2xJ9ORccq15xK4F-t4MZnRvC6Yz7YccATZQQCfB0uh8yLADb8cH1gQNDkDYuSrQ1mOw7QC1Gc2azRvTkt38dMV259O9uOz7AV9TWCq9o8q2bejhRKUKB5RKhc7UH-gXlSVDYQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3066335167</pqid></control><display><type>article</type><title>Comparative analysis of C n2 estimation methods for sonic anemometer data</title><source>Alma/SFX Local Collection</source><creator>Beason, Melissa ; Potvin, Guy ; Sprung, Detlev ; McCrae, Jack ; Gladysz, Szymon</creator><creatorcontrib>Beason, Melissa ; Potvin, Guy ; Sprung, Detlev ; McCrae, Jack ; Gladysz, Szymon</creatorcontrib><description>Wind speed and sonic temperature measured with ultrasonic anemometers are often utilized to estimate the refractive index structure parameter C n2, a vital parameter for optical propagation. In this work, we compare four methods to estimate C n2 from C T2, using the same temporal sonic temperature data streams for two separated sonic anemometers on a homogenous path. Values of C n2 obtained with these four methods using field trial data are compared to those from a commercial scintillometer and from the differential image motion method using a grid of light sources positioned at the end of a common path. In addition to the comparison between the methods, we also consider appropriate error bars for C n2 based on sonic temperature considering only the errors from having a finite number of turbulent samples. The Bayesian and power spectral methods were found to give adequate estimates for strong turbulence levels but consistently overestimated the C n2 for weak turbulence. The nearest neighbors and structure function methods performed well under all turbulence strengths tested.</description><identifier>EISSN: 1539-4522</identifier><identifier>DOI: 10.1364/AO.520976</identifier><language>eng</language><ispartof>Applied optics. Optical technology and biomedical optics, 2024-06, Vol.63 (16), p.E94-E106</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Beason, Melissa</creatorcontrib><creatorcontrib>Potvin, Guy</creatorcontrib><creatorcontrib>Sprung, Detlev</creatorcontrib><creatorcontrib>McCrae, Jack</creatorcontrib><creatorcontrib>Gladysz, Szymon</creatorcontrib><title>Comparative analysis of C n2 estimation methods for sonic anemometer data</title><title>Applied optics. Optical technology and biomedical optics</title><description>Wind speed and sonic temperature measured with ultrasonic anemometers are often utilized to estimate the refractive index structure parameter C n2, a vital parameter for optical propagation. In this work, we compare four methods to estimate C n2 from C T2, using the same temporal sonic temperature data streams for two separated sonic anemometers on a homogenous path. Values of C n2 obtained with these four methods using field trial data are compared to those from a commercial scintillometer and from the differential image motion method using a grid of light sources positioned at the end of a common path. In addition to the comparison between the methods, we also consider appropriate error bars for C n2 based on sonic temperature considering only the errors from having a finite number of turbulent samples. The Bayesian and power spectral methods were found to give adequate estimates for strong turbulence levels but consistently overestimated the C n2 for weak turbulence. The nearest neighbors and structure function methods performed well under all turbulence strengths tested.</description><issn>1539-4522</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqVjrsKwkAURBdBMD4K_-CWNsZ9JBtSSlC0srEPS7LBlWxuzE0E_94t_AGrgZkzwzC2FTwWSieH4y1OJc8zPWORSFW-T1IpF2xJ9ORccq15xK4F-t4MZnRvC6Yz7YccATZQQCfB0uh8yLADb8cH1gQNDkDYuSrQ1mOw7QC1Gc2azRvTkt38dMV259O9uOz7AV9TWCq9o8q2bejhRKUKB5RKhc7UH-gXlSVDYQ</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Beason, Melissa</creator><creator>Potvin, Guy</creator><creator>Sprung, Detlev</creator><creator>McCrae, Jack</creator><creator>Gladysz, Szymon</creator><scope>7X8</scope></search><sort><creationdate>20240601</creationdate><title>Comparative analysis of C n2 estimation methods for sonic anemometer data</title><author>Beason, Melissa ; Potvin, Guy ; Sprung, Detlev ; McCrae, Jack ; Gladysz, Szymon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_30663351673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Beason, Melissa</creatorcontrib><creatorcontrib>Potvin, Guy</creatorcontrib><creatorcontrib>Sprung, Detlev</creatorcontrib><creatorcontrib>McCrae, Jack</creatorcontrib><creatorcontrib>Gladysz, Szymon</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>Applied optics. Optical technology and biomedical optics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beason, Melissa</au><au>Potvin, Guy</au><au>Sprung, Detlev</au><au>McCrae, Jack</au><au>Gladysz, Szymon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative analysis of C n2 estimation methods for sonic anemometer data</atitle><jtitle>Applied optics. Optical technology and biomedical optics</jtitle><date>2024-06-01</date><risdate>2024</risdate><volume>63</volume><issue>16</issue><spage>E94</spage><epage>E106</epage><pages>E94-E106</pages><eissn>1539-4522</eissn><abstract>Wind speed and sonic temperature measured with ultrasonic anemometers are often utilized to estimate the refractive index structure parameter C n2, a vital parameter for optical propagation. In this work, we compare four methods to estimate C n2 from C T2, using the same temporal sonic temperature data streams for two separated sonic anemometers on a homogenous path. Values of C n2 obtained with these four methods using field trial data are compared to those from a commercial scintillometer and from the differential image motion method using a grid of light sources positioned at the end of a common path. In addition to the comparison between the methods, we also consider appropriate error bars for C n2 based on sonic temperature considering only the errors from having a finite number of turbulent samples. The Bayesian and power spectral methods were found to give adequate estimates for strong turbulence levels but consistently overestimated the C n2 for weak turbulence. The nearest neighbors and structure function methods performed well under all turbulence strengths tested.</abstract><doi>10.1364/AO.520976</doi></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1539-4522 |
ispartof | Applied optics. Optical technology and biomedical optics, 2024-06, Vol.63 (16), p.E94-E106 |
issn | 1539-4522 |
language | eng |
recordid | cdi_proquest_miscellaneous_3066335167 |
source | Alma/SFX Local Collection |
title | Comparative analysis of C n2 estimation methods for sonic anemometer data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A21%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20analysis%20of%20C%20n2%20estimation%20methods%20for%20sonic%20anemometer%20data&rft.jtitle=Applied%20optics.%20Optical%20technology%20and%20biomedical%20optics&rft.au=Beason,%20Melissa&rft.date=2024-06-01&rft.volume=63&rft.issue=16&rft.spage=E94&rft.epage=E106&rft.pages=E94-E106&rft.eissn=1539-4522&rft_id=info:doi/10.1364/AO.520976&rft_dat=%3Cproquest%3E3066335167%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3066335167&rft_id=info:pmid/&rfr_iscdi=true |