Comparative analysis of C n2 estimation methods for sonic anemometer data

Wind speed and sonic temperature measured with ultrasonic anemometers are often utilized to estimate the refractive index structure parameter C n2, a vital parameter for optical propagation. In this work, we compare four methods to estimate C n2 from C T2, using the same temporal sonic temperature d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied optics. Optical technology and biomedical optics 2024-06, Vol.63 (16), p.E94-E106
Hauptverfasser: Beason, Melissa, Potvin, Guy, Sprung, Detlev, McCrae, Jack, Gladysz, Szymon
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page E106
container_issue 16
container_start_page E94
container_title Applied optics. Optical technology and biomedical optics
container_volume 63
creator Beason, Melissa
Potvin, Guy
Sprung, Detlev
McCrae, Jack
Gladysz, Szymon
description Wind speed and sonic temperature measured with ultrasonic anemometers are often utilized to estimate the refractive index structure parameter C n2, a vital parameter for optical propagation. In this work, we compare four methods to estimate C n2 from C T2, using the same temporal sonic temperature data streams for two separated sonic anemometers on a homogenous path. Values of C n2 obtained with these four methods using field trial data are compared to those from a commercial scintillometer and from the differential image motion method using a grid of light sources positioned at the end of a common path. In addition to the comparison between the methods, we also consider appropriate error bars for C n2 based on sonic temperature considering only the errors from having a finite number of turbulent samples. The Bayesian and power spectral methods were found to give adequate estimates for strong turbulence levels but consistently overestimated the C n2 for weak turbulence. The nearest neighbors and structure function methods performed well under all turbulence strengths tested.
doi_str_mv 10.1364/AO.520976
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_3066335167</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3066335167</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_30663351673</originalsourceid><addsrcrecordid>eNqVjrsKwkAURBdBMD4K_-CWNsZ9JBtSSlC0srEPS7LBlWxuzE0E_94t_AGrgZkzwzC2FTwWSieH4y1OJc8zPWORSFW-T1IpF2xJ9ORccq15xK4F-t4MZnRvC6Yz7YccATZQQCfB0uh8yLADb8cH1gQNDkDYuSrQ1mOw7QC1Gc2azRvTkt38dMV259O9uOz7AV9TWCq9o8q2bejhRKUKB5RKhc7UH-gXlSVDYQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3066335167</pqid></control><display><type>article</type><title>Comparative analysis of C n2 estimation methods for sonic anemometer data</title><source>Alma/SFX Local Collection</source><creator>Beason, Melissa ; Potvin, Guy ; Sprung, Detlev ; McCrae, Jack ; Gladysz, Szymon</creator><creatorcontrib>Beason, Melissa ; Potvin, Guy ; Sprung, Detlev ; McCrae, Jack ; Gladysz, Szymon</creatorcontrib><description>Wind speed and sonic temperature measured with ultrasonic anemometers are often utilized to estimate the refractive index structure parameter C n2, a vital parameter for optical propagation. In this work, we compare four methods to estimate C n2 from C T2, using the same temporal sonic temperature data streams for two separated sonic anemometers on a homogenous path. Values of C n2 obtained with these four methods using field trial data are compared to those from a commercial scintillometer and from the differential image motion method using a grid of light sources positioned at the end of a common path. In addition to the comparison between the methods, we also consider appropriate error bars for C n2 based on sonic temperature considering only the errors from having a finite number of turbulent samples. The Bayesian and power spectral methods were found to give adequate estimates for strong turbulence levels but consistently overestimated the C n2 for weak turbulence. The nearest neighbors and structure function methods performed well under all turbulence strengths tested.</description><identifier>EISSN: 1539-4522</identifier><identifier>DOI: 10.1364/AO.520976</identifier><language>eng</language><ispartof>Applied optics. Optical technology and biomedical optics, 2024-06, Vol.63 (16), p.E94-E106</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Beason, Melissa</creatorcontrib><creatorcontrib>Potvin, Guy</creatorcontrib><creatorcontrib>Sprung, Detlev</creatorcontrib><creatorcontrib>McCrae, Jack</creatorcontrib><creatorcontrib>Gladysz, Szymon</creatorcontrib><title>Comparative analysis of C n2 estimation methods for sonic anemometer data</title><title>Applied optics. Optical technology and biomedical optics</title><description>Wind speed and sonic temperature measured with ultrasonic anemometers are often utilized to estimate the refractive index structure parameter C n2, a vital parameter for optical propagation. In this work, we compare four methods to estimate C n2 from C T2, using the same temporal sonic temperature data streams for two separated sonic anemometers on a homogenous path. Values of C n2 obtained with these four methods using field trial data are compared to those from a commercial scintillometer and from the differential image motion method using a grid of light sources positioned at the end of a common path. In addition to the comparison between the methods, we also consider appropriate error bars for C n2 based on sonic temperature considering only the errors from having a finite number of turbulent samples. The Bayesian and power spectral methods were found to give adequate estimates for strong turbulence levels but consistently overestimated the C n2 for weak turbulence. The nearest neighbors and structure function methods performed well under all turbulence strengths tested.</description><issn>1539-4522</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqVjrsKwkAURBdBMD4K_-CWNsZ9JBtSSlC0srEPS7LBlWxuzE0E_94t_AGrgZkzwzC2FTwWSieH4y1OJc8zPWORSFW-T1IpF2xJ9ORccq15xK4F-t4MZnRvC6Yz7YccATZQQCfB0uh8yLADb8cH1gQNDkDYuSrQ1mOw7QC1Gc2azRvTkt38dMV259O9uOz7AV9TWCq9o8q2bejhRKUKB5RKhc7UH-gXlSVDYQ</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Beason, Melissa</creator><creator>Potvin, Guy</creator><creator>Sprung, Detlev</creator><creator>McCrae, Jack</creator><creator>Gladysz, Szymon</creator><scope>7X8</scope></search><sort><creationdate>20240601</creationdate><title>Comparative analysis of C n2 estimation methods for sonic anemometer data</title><author>Beason, Melissa ; Potvin, Guy ; Sprung, Detlev ; McCrae, Jack ; Gladysz, Szymon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_30663351673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Beason, Melissa</creatorcontrib><creatorcontrib>Potvin, Guy</creatorcontrib><creatorcontrib>Sprung, Detlev</creatorcontrib><creatorcontrib>McCrae, Jack</creatorcontrib><creatorcontrib>Gladysz, Szymon</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>Applied optics. Optical technology and biomedical optics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beason, Melissa</au><au>Potvin, Guy</au><au>Sprung, Detlev</au><au>McCrae, Jack</au><au>Gladysz, Szymon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative analysis of C n2 estimation methods for sonic anemometer data</atitle><jtitle>Applied optics. Optical technology and biomedical optics</jtitle><date>2024-06-01</date><risdate>2024</risdate><volume>63</volume><issue>16</issue><spage>E94</spage><epage>E106</epage><pages>E94-E106</pages><eissn>1539-4522</eissn><abstract>Wind speed and sonic temperature measured with ultrasonic anemometers are often utilized to estimate the refractive index structure parameter C n2, a vital parameter for optical propagation. In this work, we compare four methods to estimate C n2 from C T2, using the same temporal sonic temperature data streams for two separated sonic anemometers on a homogenous path. Values of C n2 obtained with these four methods using field trial data are compared to those from a commercial scintillometer and from the differential image motion method using a grid of light sources positioned at the end of a common path. In addition to the comparison between the methods, we also consider appropriate error bars for C n2 based on sonic temperature considering only the errors from having a finite number of turbulent samples. The Bayesian and power spectral methods were found to give adequate estimates for strong turbulence levels but consistently overestimated the C n2 for weak turbulence. The nearest neighbors and structure function methods performed well under all turbulence strengths tested.</abstract><doi>10.1364/AO.520976</doi></addata></record>
fulltext fulltext
identifier EISSN: 1539-4522
ispartof Applied optics. Optical technology and biomedical optics, 2024-06, Vol.63 (16), p.E94-E106
issn 1539-4522
language eng
recordid cdi_proquest_miscellaneous_3066335167
source Alma/SFX Local Collection
title Comparative analysis of C n2 estimation methods for sonic anemometer data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A21%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20analysis%20of%20C%20n2%20estimation%20methods%20for%20sonic%20anemometer%20data&rft.jtitle=Applied%20optics.%20Optical%20technology%20and%20biomedical%20optics&rft.au=Beason,%20Melissa&rft.date=2024-06-01&rft.volume=63&rft.issue=16&rft.spage=E94&rft.epage=E106&rft.pages=E94-E106&rft.eissn=1539-4522&rft_id=info:doi/10.1364/AO.520976&rft_dat=%3Cproquest%3E3066335167%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3066335167&rft_id=info:pmid/&rfr_iscdi=true