Comparative analysis of C n2 estimation methods for sonic anemometer data

Wind speed and sonic temperature measured with ultrasonic anemometers are often utilized to estimate the refractive index structure parameter C n2, a vital parameter for optical propagation. In this work, we compare four methods to estimate C n2 from C T2, using the same temporal sonic temperature d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied optics. Optical technology and biomedical optics 2024-06, Vol.63 (16), p.E94-E106
Hauptverfasser: Beason, Melissa, Potvin, Guy, Sprung, Detlev, McCrae, Jack, Gladysz, Szymon
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Wind speed and sonic temperature measured with ultrasonic anemometers are often utilized to estimate the refractive index structure parameter C n2, a vital parameter for optical propagation. In this work, we compare four methods to estimate C n2 from C T2, using the same temporal sonic temperature data streams for two separated sonic anemometers on a homogenous path. Values of C n2 obtained with these four methods using field trial data are compared to those from a commercial scintillometer and from the differential image motion method using a grid of light sources positioned at the end of a common path. In addition to the comparison between the methods, we also consider appropriate error bars for C n2 based on sonic temperature considering only the errors from having a finite number of turbulent samples. The Bayesian and power spectral methods were found to give adequate estimates for strong turbulence levels but consistently overestimated the C n2 for weak turbulence. The nearest neighbors and structure function methods performed well under all turbulence strengths tested.
ISSN:1539-4522
DOI:10.1364/AO.520976