Electrophoretic deposition of MXenes and their composites: Toward a scalable approach
Over the past decade, MXenes, a novel class of advanced 2D nanomaterials, have manifested as a prominent electrode material with diverse applications. Their unique layered structures, negative zeta potential, charge carrier mobility, mechanical properties, adjustable bandgap, hydrophilicity, metalli...
Gespeichert in:
Veröffentlicht in: | Advances in colloid and interface science 2024-09, Vol.331, p.103208, Article 103208 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Over the past decade, MXenes, a novel class of advanced 2D nanomaterials, have manifested as a prominent electrode material with diverse applications. Their unique layered structures, negative zeta potential, charge carrier mobility, mechanical properties, adjustable bandgap, hydrophilicity, metallic nature, and surface chemistry collectively contribute to the abundance of active redox sites on the surface and a reduction in the ion diffusion pathway. Despite such promising attributes of MXene, challenges like aggregation and restacking reduce the accessibility of active surface sites for electrolyte ions. Amongst approaches such as surface functionalization, addition of spacers, or facilitating pore formation, the electrophoretic deposition (EPD) of MXene on substrates has commenced to gain attention aiming to mitigate these issues. More importantly, it offers large-scale film fabrication in a short time without the necessity of using a charge-inducing agent. This review compiles recent advances in the use of EPD for preparing MXene-based electrodes and discusses the effect of EPD parameters on the relevant device performance. Recognition is given to understanding the relation of MXene colloidal composition in aqueous (and in some cases, non-aqueous) dispersions, deposition times, and other relevant parameters on respective device performances. In conclusion, the potential avenues offered by MXenes for future research on electrode materials are emphasized.
[Display omitted]
•Electrophoretic deposition (EPD) is a cost- and time-effective method to fabricate films with tunable thickness.•The rising importance of the application of EPD in the fabrication of MXene-based films for various applications is discussed.•Anodic EPD of MXene can be carried out in water due to the negative surface charge.•Fabrication of binder-free electrodes can be developed via the EPD method. |
---|---|
ISSN: | 0001-8686 1873-3727 1873-3727 |
DOI: | 10.1016/j.cis.2024.103208 |