A novel aptasensor platform for the detection of carcinoembryonic antigen using quartz crystal microbalance

In this study, a quartz crystal microbalance (QCM) aptasensor for carcinoembryonic antigen (CEA), a well-known biomarker for various cancer types, was reported, utilizing two different aptamers. To achieve this, a nanofilm of 4-mercaptophenyl was electrochemically attached to gold-coated QCM crystal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Talanta (Oxford) 2024-09, Vol.277, p.126376, Article 126376
Hauptverfasser: Erkal-Aytemur, Aslı, Mülazımoğlu, İbrahim Ender, Üstündağ, Zafer, Caglayan, Mustafa Oguzhan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, a quartz crystal microbalance (QCM) aptasensor for carcinoembryonic antigen (CEA), a well-known biomarker for various cancer types, was reported, utilizing two different aptamers. To achieve this, a nanofilm of 4-mercaptophenyl was electrochemically attached to gold-coated QCM crystal surfaces via the reduction of 4-mercaptobenzenediazonium salt (4 MB-DAT) using cyclic voltammetry. Subsequently, gold nanoparticles (AuNP) were affixed to this structure, and then aptamers (antiCEA1 and antiCEA2) modified with SH-functional ends bound to AuNPs completed the modification. The analytical performance of the CEA sensor was evaluated through simultaneous QCM measurements employing CEA solutions ranging from 0.1 ng/mL to 25 ng/mL. The detection limit (LOD) for CEA was determined to be 102 pg/mL for antiCEA1 and 108 pg/mL for antiCEA2 aptamers. Interday and intraday precision and accuracy tests yielded maximum results of 4.3 and + 3.8, respectively, for both aptasensors, as measured by relative standard deviation (RSD%) and relative error (RE%). The kinetic data of the aptasensors resulted in affinity values (KD) of 0.43 ± 0.14 nM for antiCEA1 and 0.75 ± 0.42 nM for antiCEA2. These values were lower than the reported values of 3.9 nM and 37.8 nM for both aptamers, respectively. The selectivity of the aptasensor was evaluated by measuring the signal changes caused by alpha-fetoprotein (AFP), cancer antigen (CA-125), and vascular endothelial growth factor (VEGF-165) individually and together at a concentration of 500 ng/mL, resulting in a maximum 4.1 % change, which was comparable to precision and accuracy values reported in the literature. After confirming the selectivity of the aptamers, recovery experiments were conducted using spiked commercial serum samples to simulate real samples, and the lowest recovery value obtained was 95.4 %. It was determined that two different aptasensors could be successfully used for the QCM-based detection of CEA in this study. [Display omitted] •Selective and sensitive detection of CEA in human serum reported.•A novel CEA sensor on electrochemical nanofilm using QCM reported.•The method was developed with two different aptamers.
ISSN:0039-9140
1873-3573
1873-3573
DOI:10.1016/j.talanta.2024.126376