Catalytic air oxidation of biogas slurry using Cu sub-nanocluster supported by mesoporous TiZrO4 and protected by SiO2 shell

Biogas slurry, an inevitable outcome of anaerobic digestion (AD), is a treatment burden for urban environmental management. In this study, two kinds of biogas slurry (slurry J and slurry C), collected from the AD plants in Japan and China, were treated using novel TiZrO4 @Cu and TiZrO4 @Cu@SiO2 mult...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hazardous materials 2024-08, Vol.474, p.134830, Article 134830
Hauptverfasser: Cai, Jiabai, Li, Huan, Huang, Wenjia, He, Shuting, Feng, Kai, Takaoka, Masaki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Biogas slurry, an inevitable outcome of anaerobic digestion (AD), is a treatment burden for urban environmental management. In this study, two kinds of biogas slurry (slurry J and slurry C), collected from the AD plants in Japan and China, were treated using novel TiZrO4 @Cu and TiZrO4 @Cu@SiO2 multilayered hollow spheres containing Cu sub-nanoclusters as the catalyst. The results showed that the chemical oxygen demand (COD) was removed by 63 % for slurry J and 44 % for slurry C after 5 h. The Cu sub-nanoclusters acted as co-catalysts and active centers, facilitating rapid electron transfer to oxygen molecules and forming highly reactive •O2− and •OH species (Use slurry J as the based solution). These free radicals cleaved the interconnecting bonds between benzene rings, disintegrated the ring structure, formed intermediate compounds such as n-hexylic acid, and ultimately mineralized organic pollutants in biogas slurry into CO2 and H2O. At the same time, TiZrO4 @Cu@SiO2 had excellent stability due to the protection of the SiO2 shell and reduced threefold Cu leaching than TiZrO4 @Cu. The COD removal rate was always 60 % in six cycles in the slurry J. The new catalyst ensured the high performance of catalytic air oxidation at low temperatures, which has significant potential as an environmentally friendly and energy-saving method for organic wastewater treatment. [Display omitted] •Cu sub-nanocluster embedded on the surface of TiZrO4 hollow sphere was fabricated.•The TiZrO4 @Cu protected by SiO2 shell catalytic system had excellent stability.•The mechanism of TiZrO4 @Cu catalyzing reactions was revealed through LSPR effects.•Cu sub-nanocluster catalyst activated O2 to form •O2− and •OH radicals were proved.
ISSN:0304-3894
1873-3336
1873-3336
DOI:10.1016/j.jhazmat.2024.134830