Design, synthesis, biological evaluation, and in silico studies of novel pyridopyridine derivatives as anticancer candidates targeting FMS kinase
Design and synthesis of novel 4-carboxamidopyrido[3,2-b]pyridine derivatives as novel rigid analogues of sorafenib are reported herein. The target compounds showed potent antiproliferative activities against a panel of NCI-60 cancer cell lines as well as hepatocellular carcinoma cell line. Compounds...
Gespeichert in:
Veröffentlicht in: | European journal of medicinal chemistry 2024-08, Vol.274, p.116557, Article 116557 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Design and synthesis of novel 4-carboxamidopyrido[3,2-b]pyridine derivatives as novel rigid analogues of sorafenib are reported herein. The target compounds showed potent antiproliferative activities against a panel of NCI-60 cancer cell lines as well as hepatocellular carcinoma cell line. Compounds 8g and 9f were among the most promising derivatives in terms of effectiveness and safety. Therefore, they were further examined to demonstrate their ability to induce apoptosis and alter cell cycle progression in hepatocellular carcinoma cells. The most potent compounds were tested against a panel of kinases that indicated their selectivity against FMS kinase. Compounds 8g and 8h showed the most potent activities against FMS kinase with IC50 values of 21.5 and 73.9 nM, respectively. The two compounds were also tested in NanoBRET assay to investigate their ability to inhibit FMS kinase in cells (IC50 = 563 nM (8g) and 1347 nM (8h) vs. IC50 = 1654 nM for sorafenib). Furthermore, compounds 8g and 8h possess potent inhibitory activities against macrophages when investigated in bone marrow-derived macrophages (BMDM) assay (IC50 = 56 nM and 167 nM, respectively, 164 nM for sorafenib). The safety and selectivity of these compounds were confirmed when tested against normal cell lines. Their safety profile was further confirmed using hERG assay. In silico studies were carried out to investigate their binding modes in the active site of FMS kinase, and to develop a QSAR model for these new motifs.
[Display omitted]
•Synthesis, biological activities, and in silico studies of new pyridopyridine derivatives are reported.•Compounds 8g, 8h, 9e, 9f, 9h, and 9i are the most promising anticancer derivatives.•Compounds 8g and 8h are potent and selective inhibitors of FMS kinase.•BMDM and in-cell kinase testing showed promising results.•Compounds 8g and 9f induced apoptosis and altered cell cycle progression in HCC cells. |
---|---|
ISSN: | 0223-5234 1768-3254 1768-3254 |
DOI: | 10.1016/j.ejmech.2024.116557 |