TiO2 nanoparticle photoactivation and oxidation reactions in freshwater and marine systems: The role of radical scavengers

Titanium dioxide nanoparticles (TiO2-NP) present in wastewater effluent are discharged into freshwater and saltwater (i.e., marine) systems. TiO2-NP can be solar-driven photoactivated by ultraviolet (UV)-light producing reactive oxygen species including hydroxyl radicals (·OH). ·OH are non-selective...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemosphere (Oxford) 2024-08, Vol.361, p.142549, Article 142549
Hauptverfasser: Ellison, Rayna S., Huling, Scott G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Titanium dioxide nanoparticles (TiO2-NP) present in wastewater effluent are discharged into freshwater and saltwater (i.e., marine) systems. TiO2-NP can be solar-driven photoactivated by ultraviolet (UV)-light producing reactive oxygen species including hydroxyl radicals (·OH). ·OH are non-selective and react with a broad range of species in water. In other studies, photoactivation of TiO2-NP has been correlated with oxidative stress and ecotoxicological impacts on plant and animal biota. This study examined the photoactivation of TiO2-NP in freshwater and saltwater systems, and contrasted the oxidation potential in both systems using methylene blue (MB) as a reaction probe. Maximum MB loss (51.9%, n = 4; 95% confidence interval 49.4–54.5) was measured in salt-free, deionized water where ·OH scavenging was negligible; minimum MB loss (1%) was measured in saltwater due to significant ·OH scavenging, indicating the inverse correlation between MB loss and radical scavenging. A kinetic analysis of scavenging by seawater constituents indicated Cl− had the greatest impact due to high concentration and high reaction rate constant. Significant loss of MB occurred in the presence of Br− relative to other less aggressive scavengers present in seawater (i.e., HCO3−, HSO4−). This result is consistent with the formation of Bromate, a strong oxidant that subsequently reacts with MB. In freshwater samples collected from different water bodies in Oklahoma (n = 12), the average MB loss was 13.4%. Greater MB loss in freshwater systems relative to marine systems was due to lower ·OH scavenging by various water quality parameters. Overall, TiO2-NP photoactivation in freshwater systems has the potential to cause greater oxidative stress and ecotoxicological impacts than in marine systems where ·OH scavenging is a dominant reaction. [Display omitted] •TiO2-NP photoactivation yields strong, non-selective hydroxyl radicals (·OH).•Probe oxidation in seawater < in fresh water body samples (n = 12).•·OH scavenging in seawater is attributed primarily to Cl−.•Seawater: OH scavenging rate/probe oxidation rate ∼11,400.•Oxidative stress effects in freshwater systems > marine systems.
ISSN:0045-6535
1879-1298
1879-1298
DOI:10.1016/j.chemosphere.2024.142549