Artificial intelligence-analyzed computed tomography in patients undergoing transcatheter tricuspid valve repair

Baseline right ventricular (RV) function derived from 3-dimensional analyses has been demonstrated to be predictive in patients undergoing transcatheter tricuspid valve repair (TTVR). The complex nature of these cumbersome analyses makes patient selection based on established imaging methods challen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of cardiology 2024-09, Vol.411, p.132233, Article 132233
Hauptverfasser: Kirchner, Johannes, Gerçek, Muhammed, Gesch, Johannes, Omran, Hazem, Friedrichs, Kai, Rudolph, Felix, Ivannikova, Maria, Rossnagel, Tobias, Piran, Misagh, Pfister, Roman, Blanke, Philipp, Rudolph, Volker, Rudolph, Tanja K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 132233
container_title International journal of cardiology
container_volume 411
creator Kirchner, Johannes
Gerçek, Muhammed
Gesch, Johannes
Omran, Hazem
Friedrichs, Kai
Rudolph, Felix
Ivannikova, Maria
Rossnagel, Tobias
Piran, Misagh
Pfister, Roman
Blanke, Philipp
Rudolph, Volker
Rudolph, Tanja K.
description Baseline right ventricular (RV) function derived from 3-dimensional analyses has been demonstrated to be predictive in patients undergoing transcatheter tricuspid valve repair (TTVR). The complex nature of these cumbersome analyses makes patient selection based on established imaging methods challenging. Artificial intelligence (AI)-driven computed tomography (CT) segmentation of the RV might serve as a fast and predictive tool for evaluating patients prior to TTVR. Patients suffering from severe tricuspid regurgitation underwent full cycle cardiac CT. AI-driven analyses were compared to conventional CT analyses. Outcome measures were correlated with survival free of rehospitalization for heart-failure or death after TTVR as the primary endpoint. Automated AI-based image CT-analysis from 100 patients (mean age 77 ± 8 years, 63% female) showed excellent correlation for chamber quantification compared to conventional, core-lab evaluated CT analysis (R 0.963–0.966; p 
doi_str_mv 10.1016/j.ijcard.2024.132233
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3065981497</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167527324008556</els_id><sourcerecordid>3065981497</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-66628853a26f143a4c0e4b35435be19ebe60d6f6a6c7895925307529353720733</originalsourceid><addsrcrecordid>eNp9kE1rGzEQhkVpaZy0_6CUPfayrr6lvRRCSJqCIZf2LGTtrDNmvyppDc6vr8ymPfY0M_DMDO9DyCdGt4wy_fW4xWPwsd1yyuWWCc6FeEM2zBpZM6PkW7IpmKkVN-KKXKd0pJTKprHvyZWwVlpj6IbMtzFjhwF9X-GYoe_xAGOA2o--P79AW4VpmJdcmjwN0yH6-flcyGr2GWHMqVrGFuJhwvFQ5ejHFHx-hgyxTBiWNGNbnXx_girC7DF-IO863yf4-FpvyK-H-593j_Xu6fuPu9tdHQRjudZac2uV8Fx3TAovAwW5F0oKtQfWwB40bXWnvQ7GNqrhSlCjeCOUMJwaIW7Il_XuHKffC6TsBkyh5PMjTEtygmrVWCYbU1C5oiFOKUXo3Bxx8PHsGHUX1-7oVtfu4tqtrsva59cPy36A9t_SX7kF-LYCUHKeEKJLAS9yW4wQsmsn_P-HP_OPkxA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3065981497</pqid></control><display><type>article</type><title>Artificial intelligence-analyzed computed tomography in patients undergoing transcatheter tricuspid valve repair</title><source>Elsevier ScienceDirect Journals</source><creator>Kirchner, Johannes ; Gerçek, Muhammed ; Gesch, Johannes ; Omran, Hazem ; Friedrichs, Kai ; Rudolph, Felix ; Ivannikova, Maria ; Rossnagel, Tobias ; Piran, Misagh ; Pfister, Roman ; Blanke, Philipp ; Rudolph, Volker ; Rudolph, Tanja K.</creator><creatorcontrib>Kirchner, Johannes ; Gerçek, Muhammed ; Gesch, Johannes ; Omran, Hazem ; Friedrichs, Kai ; Rudolph, Felix ; Ivannikova, Maria ; Rossnagel, Tobias ; Piran, Misagh ; Pfister, Roman ; Blanke, Philipp ; Rudolph, Volker ; Rudolph, Tanja K.</creatorcontrib><description>Baseline right ventricular (RV) function derived from 3-dimensional analyses has been demonstrated to be predictive in patients undergoing transcatheter tricuspid valve repair (TTVR). The complex nature of these cumbersome analyses makes patient selection based on established imaging methods challenging. Artificial intelligence (AI)-driven computed tomography (CT) segmentation of the RV might serve as a fast and predictive tool for evaluating patients prior to TTVR. Patients suffering from severe tricuspid regurgitation underwent full cycle cardiac CT. AI-driven analyses were compared to conventional CT analyses. Outcome measures were correlated with survival free of rehospitalization for heart-failure or death after TTVR as the primary endpoint. Automated AI-based image CT-analysis from 100 patients (mean age 77 ± 8 years, 63% female) showed excellent correlation for chamber quantification compared to conventional, core-lab evaluated CT analysis (R 0.963–0.966; p &lt; 0.001). At 1 year (mean follow-up 229 ± 134 days) the primary endpoint occurred significantly more frequently in patients with reduced RV ejection fraction (EF) &lt;50% (36.6% vs. 13.7%; HR 2.864, CI 1.212–6.763; p = 0.016). Furthermore, patients with dysfunctional RVs defined as end-diastolic RV volume &gt; 210 ml and RV EF &lt;50% demonstrated worse outcome than patients with functional RVs (43.7% vs. 12.2%; HR 3.753, CI 1.621–8.693; p = 0.002). Derived RVEF and dysfunctional RV were predictors for death and hospitalization after TTVR. AI-facilitated CT analysis serves as an inter- and intra-observer independent and time-effective tool which may thus aid in optimizing patient selection prior to TTVR in clinical routine and in trials. •AI-based CT analysis is inter- and intra-observer-independent and can be a time-effective tool for daily clinical practice.•AI analyses demonstrated excellent agreement and correlation with manual CT data segmentation.•Reduced RVEF and dysfunctional RV were predictors for death and hospitalization after TTVR.</description><identifier>ISSN: 0167-5273</identifier><identifier>ISSN: 1874-1754</identifier><identifier>EISSN: 1874-1754</identifier><identifier>DOI: 10.1016/j.ijcard.2024.132233</identifier><identifier>PMID: 38848770</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Artificial intelligence ; Right ventricle ; Tricuspid regurgitation ; Valve repair</subject><ispartof>International journal of cardiology, 2024-09, Vol.411, p.132233, Article 132233</ispartof><rights>2024 The Authors</rights><rights>Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c311t-66628853a26f143a4c0e4b35435be19ebe60d6f6a6c7895925307529353720733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167527324008556$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38848770$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kirchner, Johannes</creatorcontrib><creatorcontrib>Gerçek, Muhammed</creatorcontrib><creatorcontrib>Gesch, Johannes</creatorcontrib><creatorcontrib>Omran, Hazem</creatorcontrib><creatorcontrib>Friedrichs, Kai</creatorcontrib><creatorcontrib>Rudolph, Felix</creatorcontrib><creatorcontrib>Ivannikova, Maria</creatorcontrib><creatorcontrib>Rossnagel, Tobias</creatorcontrib><creatorcontrib>Piran, Misagh</creatorcontrib><creatorcontrib>Pfister, Roman</creatorcontrib><creatorcontrib>Blanke, Philipp</creatorcontrib><creatorcontrib>Rudolph, Volker</creatorcontrib><creatorcontrib>Rudolph, Tanja K.</creatorcontrib><title>Artificial intelligence-analyzed computed tomography in patients undergoing transcatheter tricuspid valve repair</title><title>International journal of cardiology</title><addtitle>Int J Cardiol</addtitle><description>Baseline right ventricular (RV) function derived from 3-dimensional analyses has been demonstrated to be predictive in patients undergoing transcatheter tricuspid valve repair (TTVR). The complex nature of these cumbersome analyses makes patient selection based on established imaging methods challenging. Artificial intelligence (AI)-driven computed tomography (CT) segmentation of the RV might serve as a fast and predictive tool for evaluating patients prior to TTVR. Patients suffering from severe tricuspid regurgitation underwent full cycle cardiac CT. AI-driven analyses were compared to conventional CT analyses. Outcome measures were correlated with survival free of rehospitalization for heart-failure or death after TTVR as the primary endpoint. Automated AI-based image CT-analysis from 100 patients (mean age 77 ± 8 years, 63% female) showed excellent correlation for chamber quantification compared to conventional, core-lab evaluated CT analysis (R 0.963–0.966; p &lt; 0.001). At 1 year (mean follow-up 229 ± 134 days) the primary endpoint occurred significantly more frequently in patients with reduced RV ejection fraction (EF) &lt;50% (36.6% vs. 13.7%; HR 2.864, CI 1.212–6.763; p = 0.016). Furthermore, patients with dysfunctional RVs defined as end-diastolic RV volume &gt; 210 ml and RV EF &lt;50% demonstrated worse outcome than patients with functional RVs (43.7% vs. 12.2%; HR 3.753, CI 1.621–8.693; p = 0.002). Derived RVEF and dysfunctional RV were predictors for death and hospitalization after TTVR. AI-facilitated CT analysis serves as an inter- and intra-observer independent and time-effective tool which may thus aid in optimizing patient selection prior to TTVR in clinical routine and in trials. •AI-based CT analysis is inter- and intra-observer-independent and can be a time-effective tool for daily clinical practice.•AI analyses demonstrated excellent agreement and correlation with manual CT data segmentation.•Reduced RVEF and dysfunctional RV were predictors for death and hospitalization after TTVR.</description><subject>Artificial intelligence</subject><subject>Right ventricle</subject><subject>Tricuspid regurgitation</subject><subject>Valve repair</subject><issn>0167-5273</issn><issn>1874-1754</issn><issn>1874-1754</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1rGzEQhkVpaZy0_6CUPfayrr6lvRRCSJqCIZf2LGTtrDNmvyppDc6vr8ymPfY0M_DMDO9DyCdGt4wy_fW4xWPwsd1yyuWWCc6FeEM2zBpZM6PkW7IpmKkVN-KKXKd0pJTKprHvyZWwVlpj6IbMtzFjhwF9X-GYoe_xAGOA2o--P79AW4VpmJdcmjwN0yH6-flcyGr2GWHMqVrGFuJhwvFQ5ejHFHx-hgyxTBiWNGNbnXx_girC7DF-IO863yf4-FpvyK-H-593j_Xu6fuPu9tdHQRjudZac2uV8Fx3TAovAwW5F0oKtQfWwB40bXWnvQ7GNqrhSlCjeCOUMJwaIW7Il_XuHKffC6TsBkyh5PMjTEtygmrVWCYbU1C5oiFOKUXo3Bxx8PHsGHUX1-7oVtfu4tqtrsva59cPy36A9t_SX7kF-LYCUHKeEKJLAS9yW4wQsmsn_P-HP_OPkxA</recordid><startdate>20240915</startdate><enddate>20240915</enddate><creator>Kirchner, Johannes</creator><creator>Gerçek, Muhammed</creator><creator>Gesch, Johannes</creator><creator>Omran, Hazem</creator><creator>Friedrichs, Kai</creator><creator>Rudolph, Felix</creator><creator>Ivannikova, Maria</creator><creator>Rossnagel, Tobias</creator><creator>Piran, Misagh</creator><creator>Pfister, Roman</creator><creator>Blanke, Philipp</creator><creator>Rudolph, Volker</creator><creator>Rudolph, Tanja K.</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20240915</creationdate><title>Artificial intelligence-analyzed computed tomography in patients undergoing transcatheter tricuspid valve repair</title><author>Kirchner, Johannes ; Gerçek, Muhammed ; Gesch, Johannes ; Omran, Hazem ; Friedrichs, Kai ; Rudolph, Felix ; Ivannikova, Maria ; Rossnagel, Tobias ; Piran, Misagh ; Pfister, Roman ; Blanke, Philipp ; Rudolph, Volker ; Rudolph, Tanja K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-66628853a26f143a4c0e4b35435be19ebe60d6f6a6c7895925307529353720733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial intelligence</topic><topic>Right ventricle</topic><topic>Tricuspid regurgitation</topic><topic>Valve repair</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kirchner, Johannes</creatorcontrib><creatorcontrib>Gerçek, Muhammed</creatorcontrib><creatorcontrib>Gesch, Johannes</creatorcontrib><creatorcontrib>Omran, Hazem</creatorcontrib><creatorcontrib>Friedrichs, Kai</creatorcontrib><creatorcontrib>Rudolph, Felix</creatorcontrib><creatorcontrib>Ivannikova, Maria</creatorcontrib><creatorcontrib>Rossnagel, Tobias</creatorcontrib><creatorcontrib>Piran, Misagh</creatorcontrib><creatorcontrib>Pfister, Roman</creatorcontrib><creatorcontrib>Blanke, Philipp</creatorcontrib><creatorcontrib>Rudolph, Volker</creatorcontrib><creatorcontrib>Rudolph, Tanja K.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>International journal of cardiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kirchner, Johannes</au><au>Gerçek, Muhammed</au><au>Gesch, Johannes</au><au>Omran, Hazem</au><au>Friedrichs, Kai</au><au>Rudolph, Felix</au><au>Ivannikova, Maria</au><au>Rossnagel, Tobias</au><au>Piran, Misagh</au><au>Pfister, Roman</au><au>Blanke, Philipp</au><au>Rudolph, Volker</au><au>Rudolph, Tanja K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial intelligence-analyzed computed tomography in patients undergoing transcatheter tricuspid valve repair</atitle><jtitle>International journal of cardiology</jtitle><addtitle>Int J Cardiol</addtitle><date>2024-09-15</date><risdate>2024</risdate><volume>411</volume><spage>132233</spage><pages>132233-</pages><artnum>132233</artnum><issn>0167-5273</issn><issn>1874-1754</issn><eissn>1874-1754</eissn><abstract>Baseline right ventricular (RV) function derived from 3-dimensional analyses has been demonstrated to be predictive in patients undergoing transcatheter tricuspid valve repair (TTVR). The complex nature of these cumbersome analyses makes patient selection based on established imaging methods challenging. Artificial intelligence (AI)-driven computed tomography (CT) segmentation of the RV might serve as a fast and predictive tool for evaluating patients prior to TTVR. Patients suffering from severe tricuspid regurgitation underwent full cycle cardiac CT. AI-driven analyses were compared to conventional CT analyses. Outcome measures were correlated with survival free of rehospitalization for heart-failure or death after TTVR as the primary endpoint. Automated AI-based image CT-analysis from 100 patients (mean age 77 ± 8 years, 63% female) showed excellent correlation for chamber quantification compared to conventional, core-lab evaluated CT analysis (R 0.963–0.966; p &lt; 0.001). At 1 year (mean follow-up 229 ± 134 days) the primary endpoint occurred significantly more frequently in patients with reduced RV ejection fraction (EF) &lt;50% (36.6% vs. 13.7%; HR 2.864, CI 1.212–6.763; p = 0.016). Furthermore, patients with dysfunctional RVs defined as end-diastolic RV volume &gt; 210 ml and RV EF &lt;50% demonstrated worse outcome than patients with functional RVs (43.7% vs. 12.2%; HR 3.753, CI 1.621–8.693; p = 0.002). Derived RVEF and dysfunctional RV were predictors for death and hospitalization after TTVR. AI-facilitated CT analysis serves as an inter- and intra-observer independent and time-effective tool which may thus aid in optimizing patient selection prior to TTVR in clinical routine and in trials. •AI-based CT analysis is inter- and intra-observer-independent and can be a time-effective tool for daily clinical practice.•AI analyses demonstrated excellent agreement and correlation with manual CT data segmentation.•Reduced RVEF and dysfunctional RV were predictors for death and hospitalization after TTVR.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>38848770</pmid><doi>10.1016/j.ijcard.2024.132233</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0167-5273
ispartof International journal of cardiology, 2024-09, Vol.411, p.132233, Article 132233
issn 0167-5273
1874-1754
1874-1754
language eng
recordid cdi_proquest_miscellaneous_3065981497
source Elsevier ScienceDirect Journals
subjects Artificial intelligence
Right ventricle
Tricuspid regurgitation
Valve repair
title Artificial intelligence-analyzed computed tomography in patients undergoing transcatheter tricuspid valve repair
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T01%3A52%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20intelligence-analyzed%20computed%20tomography%20in%20patients%20undergoing%20transcatheter%20tricuspid%20valve%20repair&rft.jtitle=International%20journal%20of%20cardiology&rft.au=Kirchner,%20Johannes&rft.date=2024-09-15&rft.volume=411&rft.spage=132233&rft.pages=132233-&rft.artnum=132233&rft.issn=0167-5273&rft.eissn=1874-1754&rft_id=info:doi/10.1016/j.ijcard.2024.132233&rft_dat=%3Cproquest_cross%3E3065981497%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3065981497&rft_id=info:pmid/38848770&rft_els_id=S0167527324008556&rfr_iscdi=true