Accurate Structural Elucidation of Samoquasine A and an Unknown Homologue Using a Computation-Based Machine Learning Protocol
The structure of samoquasine A has long been a subject of controversy, which was resolved only upon its successful total synthesis. We examined the structures of the associated compounds using the state-of-the-art SVM-M protocol. The method accurately discriminated all putative structures historical...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2024-06, Vol.128 (24), p.4830-4837 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The structure of samoquasine A has long been a subject of controversy, which was resolved only upon its successful total synthesis. We examined the structures of the associated compounds using the state-of-the-art SVM-M protocol. The method accurately discriminated all putative structures historically attributed to samoquasine A from a pool of 48 isomeric structures, confirming that samoquasine A is indeed identical to perlolidine. Furthermore, by applying the SVM-M protocol to an additional pool of 67 isomeric structures, we successfully assigned a yet unknown natural product, initially misidentified as perlolidine, as a novel oxime, (E)-3H-cyclopenta[c]quinolin-3-one oxime, representing the first reported cyclone oxime-quinoline natural product. |
---|---|
ISSN: | 1089-5639 1520-5215 1520-5215 |
DOI: | 10.1021/acs.jpca.4c02916 |