Investigating removal mechanisms of long- and short-chain per- and polyfluoroalkyl substances using specialty adsorbents in a field-scale surface water filtration system
This study assessed the application of two specialty adsorbents, also known as green sorption media (GSM), including clay–perlite and sand sorption media (CPS) and zero-valent iron and perlite green environmental media (ZIPGEM) to remove long- and short-chain per- and polyfluoroalkyl substances (PFA...
Gespeichert in:
Veröffentlicht in: | Journal of hazardous materials 2024-08, Vol.474, p.134646, Article 134646 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study assessed the application of two specialty adsorbents, also known as green sorption media (GSM), including clay–perlite and sand sorption media (CPS) and zero-valent iron and perlite green environmental media (ZIPGEM) to remove long- and short-chain per- and polyfluoroalkyl substances (PFAS) at field scale. The field-scale demonstration employed four GSM filter cells installed near the C-23 Canal (St. Lucie County, FL), which discharges water to the ecologically sensitive St. Lucie River estuary and to the Atlantic Ocean finally. Although prior lab-scale experiments had demonstrated the effectiveness of CPS and ZIPGEM in treating long-chain PFAS, their performance in field-scale application warranted further investigation. The study reveals the critical roles of divalent cations such as Ca2+ and monovalent cations such as ammonium and hydronium ions, as well as other water quality parameters, on PFAS removal efficacy. Ammonia, most likely resulting from photo- and bacterial ammonification, gives rise to elevated ammonium ion formation in the wet season due to the decrease in pH, which ultimately worsens PFAS adsorption. Moreover, there is a strong negative correlation between pH and PFAS removal efficiency in the presence of ammonia, as evidenced by the reduced removal of PFAS during events associated with low pH.
[Display omitted]
•Combined effect of pH and ammonium on total PFAS removal is salient.•Photo and bacteria ammonification of DON have joint effect on PFAS removal.•Long-chain PFOS can be efficiently removed by ZIPGEM. |
---|---|
ISSN: | 0304-3894 1873-3336 1873-3336 |
DOI: | 10.1016/j.jhazmat.2024.134646 |