Mechanical properties of blood exosomes and lipoproteins after the rat whole blood irradiation with X-rays in vitro explored by atomic force microscopy
Blood is a two-component system with two levels of hierarchy: the macrosystem of blood formed elements and the dispersed system of blood nanoparticles. Biological nanoparticles are the key participants in communication between the irradiated and non-irradiated cells and inducers of the non-targeted...
Gespeichert in:
Veröffentlicht in: | Micron (Oxford, England : 1993) England : 1993), 2024-09, Vol.184, p.103662, Article 103662 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Blood is a two-component system with two levels of hierarchy: the macrosystem of blood formed elements and the dispersed system of blood nanoparticles. Biological nanoparticles are the key participants in communication between the irradiated and non-irradiated cells and inducers of the non-targeted effects of ionizing radiation. The work aimed at studying by atomic force microscopy the structural, mechanical, and electrical properties of exosomes and lipoproteins (LDL/VLDL) isolated from rat blood after its exposure to X-rays in vitro.
The whole blood of Wistar rats fed with a high-fat diet was irradiated with X-rays (1 and 100 Gy) in vitro. The structural and mechanical properties (the elastic modulus and nonspecific adhesion force) of exosome and lipoprotein isolates from the blood by ultracentrifugation method were studied using Bruker Bioscope Resolve atomic force microscope in PF QNM mode, their electric properties (the zeta-potential) was measured by electrophoretic mobility.
Lipoproteins isolated from non-irradiated blood were softer (Me(LQ; UQ): 7.8(4.9;12.1) MPa) compared to blood nanoparticles of its exosome fraction (34.8(22.6;44.9) MPa) containing both exosomes and non-membrane nanoparticles. X-ray blood irradiation with a dose of 1 Gy significantly weakened the elastic properties of lipoproteins. Exposure of the blood to 100 Gy X-rays made lipoproteins stiffer and their nonspecific adhesive properties stronger. The radiation effects on the mechanical parameters of exosomes and non-membrane nanoparticles in exosome fractions differed. The significant radiation-induced change in electric properties of the studied nanoparticles was detected only for lipoproteins in the blood irradiated with 1 Gy X-rays. The low-dose radiation-induced changes in zeta-potential and increase in lipoprotein size with the appearance of a soft thick surface layer indicate the formation of the modified lipoproteins covered with a corona from macromolecules of irradiated blood.
Our data obtained using the nanomechanical mapping mode of AFM are the first evidence of the significant radiation-induced changes in the structural and mechanical properties of the dispersed system of blood nanoparticles after the X-ray irradiation of the blood.
[Display omitted]
•Blood X-ray irradiation changes the geometric and mechanical parameters of exosomes and lipoproteins.•Radiation-induced parameter changes depend on the nanoparticle nature and absorbed dose (1 and 100 Gy).•Blood exposur |
---|---|
ISSN: | 0968-4328 1878-4291 1878-4291 |
DOI: | 10.1016/j.micron.2024.103662 |