PGK1 Is Involved in the HIF-1 Signaling Pathway as a Hub Gene for Ferroptosis After Traumatic Brain Injury
The pathogenesis of ferroptosis in traumatic brain injury (TBI) is unclear; therefore, we aimed to identify key molecules associated with ferroptosis in TBI using bioinformatics analysis to determine its underlying mechanisms. GSE128543 dataset was downloaded from the Gene Expression Omnibus (GEO) d...
Gespeichert in:
Veröffentlicht in: | Molecular neurobiology 2024-06 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The pathogenesis of ferroptosis in traumatic brain injury (TBI) is unclear; therefore, we aimed to identify key molecules associated with ferroptosis in TBI using bioinformatics analysis to determine its underlying mechanisms. GSE128543 dataset was downloaded from the Gene Expression Omnibus (GEO) database, and TBI-associated modules were obtained by weighted gene co-expression network analysis (WGCNA). We identified 60 differentially expressed genes (DEGs) by intersecting the modules with ferroptosis and glycolysis/gluconeogenesis gene libraries. The hypoxia-inducible factor-1 (HIF-1) signaling pathway was identified to be critical for ferroptosis post-TBI, and protein-protein interaction (PPI) network identified 20 hub genes, including phosphoglycerate kinase 1 (PGK1), ribosomal protein (RP) family, pyruvate kinase M1/2 (PKM), hypoxia-inducible factor 1α subunit (HIF-1α), and MYC genes. In this study, we further explored the role of PGK1, a gene involved in HIF-1 signaling pathway; however, its role and mechanism in TBI are still unclear. Moreover, we constructed a TBI mouse model and examined PGK1 and HIF-1α expression levels, and the results revealed their expressions increased after cortical injury in mice and they co-localized in the same cells. Furthermore, we examined the expressions of PGK1 in the cerebrospinal fluid of 20 clinical patients with different degrees of brain injuries within 48 h of surgery and examined the cognitive function of patients according to the Glasgow Coma Scale (GCS). The results revealed that PGK1 expression level was negatively correlated with the severity of the brain injury. These findings suggest that PGK1 may become a potential hub gene for ferroptosis via the HIF-1 signaling pathway, second to neurological injury after TBI, thereby affecting patient prognosis. |
---|---|
ISSN: | 1559-1182 |
DOI: | 10.1007/s12035-024-04170-z |