Application of Repetitive Sequences in Fish Cell Depletion as a Target for the CRISPR/Cas9 System
Specific cell depletion is a common means to study the physiological function of cell lineages and tissue regeneration. However, 100% depletion is difficult to achieve with existing cell depletion strategies. With the increasing maturity of CRISPR/Cas9 technology, it is increasingly used for the dep...
Gespeichert in:
Veröffentlicht in: | Marine biotechnology (New York, N.Y.) N.Y.), 2024-08, Vol.26 (4), p.639-648 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Specific cell depletion is a common means to study the physiological function of cell lineages and tissue regeneration. However, 100% depletion is difficult to achieve with existing cell depletion strategies. With the increasing maturity of CRISPR/Cas9 technology, it is increasingly used for the depletion of various cells. However, even with this technology, it is difficult to complete the depletion of specific gene knockout cells. For this reason, cell depletion with the use of repetitive sequences as the target of CRISPR/Cas9 was explored using zebrafish. All cells were used as the target cells for the first set of experiments. The results showed that injection of a mixture of DANA-gRNA and Cas9 mRNA into zygotes resulted in substantial cell apoptosis. Cells are almost invisible in the embryonic animal pole during the dome stage. The activities of the caspase-3 and caspase-9 proteins and the mRNA level of the
P53
gene were significantly increased. Then, primordial germ cells (PGCs) in embryos were used as the target cells in subsequent experiments. To specifically knock out PGCs, we injected the mix of DANA-gRNA, pkop: Cas9 plasmid (the kop promotor allows Cas9 expression only in PGCs), and eGFP-nos3′UTR mRNA into zebrafish fertilized eggs. The results revealed that the activity of the caspase-3 protein was significantly increased, and the mRNA levels of
P53
,
ku70
, and
ku80
were significantly upregulated, while the number of PGCs decreased gradually. Few PGCs labeled with GFP could be seen 20 h post-fertilization (hpf), and no PGCs could be seen at the germinal ridge 24 hpf. Therefore, the combination of CRISPR/Cas9 technology and repetitive sequences can achieve efficient cell depletion regardless of whether there is generalized expression or expression in specific cells. These results indicate that it is feasible to eliminate cells by using repeat sequences as CRISPR/Cas9 system target sites. |
---|---|
ISSN: | 1436-2228 1436-2236 1436-2236 |
DOI: | 10.1007/s10126-024-10328-6 |