Investigating the Corrosion Resistance of Different SiC Crystal Types: From Energy Sectors to Advanced Applications

Silicon carbide, as a third-generation semiconductor material, plays a pivotal role in various advanced technological applications. Its exceptional stability under extreme conditions has garnered a significant amount of attention. These superior characteristics make silicon carbide an ideal candidat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2024-06, Vol.40 (24), p.12322-12342
Hauptverfasser: Chen, Dongyang, Zhang, HanDong, Zhao, Guoqi, Zhu, Zhiqin, Yang, JingRan, He, Jie, Li, JunCheng, Yu, Zijia, Zhu, Zhiqi
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Silicon carbide, as a third-generation semiconductor material, plays a pivotal role in various advanced technological applications. Its exceptional stability under extreme conditions has garnered a significant amount of attention. These superior characteristics make silicon carbide an ideal candidate material for high-frequency, high-power electronic devices and applications in harsh environments. In particular, corrosion resistance in natural or artificially acidic and alkaline environments limits the practical application of many other materials. In fields such as chemical engineering, energy conversion, and environmental engineering, materials often face severe chemical erosion, necessitating materials with excellent chemical stability as foundational materials, carriers, or reaction media. Silicon carbide exhibits outstanding performance under these conditions, demonstrating significant resistance to corrosive substances such as hydrochloric acid, sulfuric acid, nitric acid, and alkaline substances such as potassium hydroxide and sodium hydroxide. Despite the well-known chemical stability of silicon carbide, the stability conditions of its different types (such as 3C-, 4H-, and 6H-SiC polycrystals) in acidic and alkaline environments, as well as the specific corrosion mechanisms and differences, warrant further investigation. This Review not only delves deeply into the detailed studies related to this topic but also highlights the current applications of different silicon carbide polycrystals in chemical reaction systems, energy conversion equipment, and recycling processes. Through a comprehensive analysis, this Review aims to bridge research gaps, offering a comparative analysis of the advantages and disadvantages between different polymorphs. It provides material scientists, engineers, and developers with a thorough understanding of silicon carbide’s behavior in various chemical environments. This work will propel the research and development of silicon carbide materials under extreme conditions, especially in areas where chemical stability is crucial for device performance and durability. It lays a solid foundation for ultra-high-power, high-integration, high-reliability module architectures, supercomputing chips, and highly safe long-life batteries.
ISSN:0743-7463
1520-5827
1520-5827
DOI:10.1021/acs.langmuir.4c01805