Risk calculators for the detection of prostate cancer: a systematic review
Background Prostate cancer (PCa) (early) detection poses significant challenges, including unnecessary testing and the risk of potential overdiagnosis. The European Association of Urology therefore suggests an individual risk-adapted approach, incorporating risk calculators (RCs) into the PCa detect...
Gespeichert in:
Veröffentlicht in: | Prostate cancer and prostatic diseases 2024-09, Vol.27 (3), p.544-557 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background
Prostate cancer (PCa) (early) detection poses significant challenges, including unnecessary testing and the risk of potential overdiagnosis. The European Association of Urology therefore suggests an individual risk-adapted approach, incorporating risk calculators (RCs) into the PCa detection pathway. In the context of ‘The PRostate Cancer Awareness and Initiative for Screening in the European Union’ (PRAISE-U) project (
https://uroweb.org/praise-u
), we aim to provide an overview of the currently available clinical RCs applicable in an early PCa detection algorithm.
Methods
We performed a systematic review to identify RCs predicting detection of clinically significant PCa at biopsy. A search was performed in the databases Medline ALL, Embase, Web of Science Core Collection, Cochrane Central Register of Controlled Trials and Google Scholar for publications between January 2010 and July 2023. We retrieved relevant literature by using the terms “prostate cancer”, “screening/diagnosis” and “predictive model”. Inclusion criteria included systematic reviews, meta-analyses, and clinical trials. Exclusion criteria applied to studies involving pre-targeted high-risk populations, diagnosed PCa patients, or a sample sizes under 50 men.
Results
We identified 6474 articles, of which 140 were included after screening abstracts and full texts. In total, we identified 96 unique RCs. Among these, 45 underwent external validation, with 28 validated in multiple cohorts. Of the externally validated RCs, 17 are based on clinical factors, 19 incorporate clinical factors along with MRI details, 4 were based on blood biomarkers alone or in combination with clinical factors, and 5 included urinary biomarkers. The median AUC of externally validated RCs ranged from 0.63 to 0.93.
Conclusions
This systematic review offers an extensive analysis of currently available RCs, their variable utilization, and performance within validation cohorts. RCs have consistently demonstrated their capacity to mitigate the limitations associated with early detection and have been integrated into modern practice and screening trials. Nevertheless, the lack of external validation data raises concerns about numerous RCs, and it is crucial to factor in this omission when evaluating whether a specific RC is applicable to one’s target population. |
---|---|
ISSN: | 1365-7852 1476-5608 1476-5608 |
DOI: | 10.1038/s41391-024-00852-w |