Reading children’s teeth to reconstruct life history and the evolution of human cooperation and cognition: The role of dental enamel microstructure and chemistry
Studying infants in the past is crucial for understanding the evolution of human life history and the evolution of cooperation, cognition, and communication. An infant’s growth, health, and mortality can provide information about the dynamics and structure of a population, their cultural practices,...
Gespeichert in:
Veröffentlicht in: | Neuroscience and biobehavioral reviews 2024-08, Vol.163, p.105745, Article 105745 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Studying infants in the past is crucial for understanding the evolution of human life history and the evolution of cooperation, cognition, and communication. An infant’s growth, health, and mortality can provide information about the dynamics and structure of a population, their cultural practices, and the adaptive capacity of a community. Skeletal remains provide one way of accessing this information for humans recovered prior to the historical periods. Teeth in particular, are retrospective archives of information that can be accessed through morphological, micromorphological, and biogeochemical methods. This review discusses how the microanatomy and formation of teeth, and particularly enamel, serve as archives of somatic growth, stress, and the environment. Examining their role in the broader context of human evolution, we discuss dental biogeochemistry and emphasize how the incremental growth of tooth microstructure facilitates the reconstruction of temporal data related to health, diet, mobility, and stress in past societies. The review concludes by considering tooth microstructure as a biomarker and the potential clinical applications.
•Teeth are archives of an individual’s biological life history.•Understanding pre- and postnatal lives in the past sheds light on human evolution.•Dental histomorphometry provides information on paces of growth and health status.•Biogeochemical analysis provides information on diet, mobility and environment•Interdisciplinary connections enrich evolutionary and modern medical approaches. |
---|---|
ISSN: | 0149-7634 1873-7528 1873-7528 |
DOI: | 10.1016/j.neubiorev.2024.105745 |