Empagliflozin alleviates neuroinflammation by inhibiting astrocyte activation in the brain and regulating gut microbiota of high-fat diet mice

A high-fat diet can modify the composition of gut microbiota, resulting in dysbiosis. Changes in gut microbiota composition can lead to increased permeability of the gut barrier, allowing bacterial products like lipopolysaccharides (LPS) to enter circulation. This process can initiate systemic infla...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of affective disorders 2024-09, Vol.360, p.229-241
Hauptverfasser: Huang, Qiaoyan, Liu, Liu, Tan, Xiaoyao, Wang, Shitong, Wang, Sichen, Luo, Jun, Chen, Jiayi, Yang, Na, Jiang, Jiajun, Liu, Yiming, Hong, Xiao, Guo, Shunyuan, Shen, Yuejian, Gao, Feng, Feng, Huina, Zhang, Jianliang, Shen, Qing, Li, Changyu, Ji, Liting
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A high-fat diet can modify the composition of gut microbiota, resulting in dysbiosis. Changes in gut microbiota composition can lead to increased permeability of the gut barrier, allowing bacterial products like lipopolysaccharides (LPS) to enter circulation. This process can initiate systemic inflammation and contribute to neuroinflammation. Empagliflozin (EF), an SGLT2 inhibitor-type hypoglycemic drug, has been reported to treat neuroinflammation. However, there is a lack of evidence showing that EF regulates the gut microbiota axis to control neuroinflammation in HFD models. In this study, we explored whether EF could improve neuroinflammation caused by an HFD via regulation of the gut microbiota and the mechanism underlying this phenomenon. Our data revealed that EF alleviates pathological brain injury, reduces the reactive proliferation of astrocytes, and increases the expression of synaptophysin. In addition, the levels of inflammatory factors in hippocampal tissue were significantly decreased after EF intervention. Subsequently, the results of 16S rRNA gene sequencing showed that EF could change the microbial community structure of mice, indicating that the abundance of Lactococcus, Ligilactobacillus and other microbial populations decreased dramatically. Therefore, EF alleviates neuroinflammation by inhibiting gut microbiota-mediated astrocyte activation in the brains of high-fat diet-fed mice. Our study focused on the gut-brain axis, and broader research on neuroinflammation can provide a more holistic understanding of the mechanisms driving neurodegenerative diseases and inform the development of effective strategies to mitigate their impact on brain health. The results provide strong evidence supporting the larger clinical application of EF. Schematic illustration of EF alleviates neuroinflammation via integrating analysis of the microbiota-gut-brain axis in high-fat diet-induced mice. [Display omitted] •RNA-seq and 16S rRNA were used to detect genes and flora species in HFD mice after administration of EF.•EF alleviates neuroinflammation via improved gut microbiota profile and affects the Akt-mTOR pathway.•The role of EF in ameliorating neuroinflammation induced by a HFD via the gut-brain axis were to investigated.
ISSN:0165-0327
1573-2517
1573-2517
DOI:10.1016/j.jad.2024.05.150